Advertisement

Effects of ZrN and W Particle Sizes on the Mechanical and Ablation Properties of ZrN/W Composites

  • Mingoo Kim
  • Seulgi Kim
  • Jiyeon Kang
  • Sung Ho Song
  • Dongju Lee
Article
  • 2 Downloads

Abstract

Tungsten composites reinforced with 20 vol% of different particle sizes of ZrN and W powders were prepared by ball milling and spark plasma sintering. Correlations between the W and ZrN grain sizes, and the mechanical and ablation properties of the composites, were investigated. The improved mechanical properties of the ZrN/W composite containing fine ZrN and fine W grains is attributed to a W grain refinement effect and a ZrN particle strengthening effect. The mass ablation rate of the composites containing fine ZrN and coarse W grains significantly decreased, i.e., 36% lower that of the composite containing fine ZrN grains and fine W grains. The improved ablation resistance is attributed to better surface coverage of the ZrO2 oxide layer because of uniformly dispersed fine ZrN particles, and to less oxidation and sweeping away of the W matrix during ablation through grain boundary diffusion suppression caused by the large W grain size.

Keywords

Composite materials Powder metallurgy Sintering Mechanical properties Microstructure Ablation properties 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP; Ministry of Science, ICT and Future Planning) (2018R1C1B5043896).

References

  1. 1.
    D. Lee, M.A. Umer, H.J. Ryu, S.H. Hong, Int. J. Refract. Met. Hard Mater. 43, 89–93 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Mabuchi, K. Okamoto, N. Saito, T. Asahina, T. Igarashi, Mater. Sci. Eng. A 237, 241–249 (1997)CrossRefGoogle Scholar
  3. 3.
    D. Lee, H. Park, H. Ryu, S. Jeon, S. Hong, J. Alloys Compd. 509, 9060–9064 (2011)CrossRefGoogle Scholar
  4. 4.
    Y.J. Wang, H.X. Peng, Y. Zhou, G.M. Song, Mater. Sci. Eng. A 528, 1805–1811 (2011)CrossRefGoogle Scholar
  5. 5.
    M.A. Umer, D. Lee, O.A. Waseem, H.J. Ryu, S.H. Hong, Met. Mater. Int. 22, 493–500 (2016)CrossRefGoogle Scholar
  6. 6.
    M.A. Umer, D. Lee, H.J. Ryu, S.H. Hong, Int. J. Refract. Met. Hard Mater. 42, 17–22 (2014)CrossRefGoogle Scholar
  7. 7.
    G.M. Song, Y. Zhou, Y.J. Wang, Mater. Charact. 50, 293–303 (2003)CrossRefGoogle Scholar
  8. 8.
    S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, J. Am. Ceram. Soc. 90, 2296 (2007)CrossRefGoogle Scholar
  9. 9.
    D. Lee, M.A. Umer, Y. Shin, S. Jeon, S. Hong, Mater. Sci. Eng. A 552, 481–485 (2012)CrossRefGoogle Scholar
  10. 10.
    T. Baker, Acta Crystallogr. A 11, 300 (1958)CrossRefGoogle Scholar
  11. 11.
    R.H. Knibbs, J. Phys. E Sci. Instrum. 2, 515 (1969)CrossRefGoogle Scholar
  12. 12.
    T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993)CrossRefGoogle Scholar
  13. 13.
    T.Q. Zhang, Y.J. Wang, Y. Zhou, G.M. Song, Mater. Sci. Eng. A Struct. 527, 4021–4027 (2010)CrossRefGoogle Scholar
  14. 14.
    D. Lee, M.A. Umer, H.J. Ryu, S.H. Hong, Int. J. Refract. Met. Hard Mater. 44, 49–53 (2014)CrossRefGoogle Scholar
  15. 15.
    M.C. Teague, G.E. Hilmas, W.G. Fahrenholtz, J. Am. Ceram. Soc. 92, 1966–1971 (2009)CrossRefGoogle Scholar
  16. 16.
    G.M. Song, Y.J. Wang, Y. Zhou, Mater. Sci. Eng. A 334, 223–232 (2002)CrossRefGoogle Scholar
  17. 17.
    G.M. Song, Y.J. Wang, Y. Zhou, Int. J. Refract. Met. Hard Mater. 21, 1–12 (2003)CrossRefGoogle Scholar
  18. 18.
    D. Lee, Y.C. Kim, M.A. Umer, K.H. Lim, S.B. Park, S.H. Hong, Ceram. Int. 39, 7475–7481 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Li, X. Chen, Y. Zhou, G. Song, Ceram. Int. 39, 2715–2721 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Yang, T. Kitashima, T. Hara, Y. Hara, Y. Yamabe-Mitarai, M. Hagiwara, L.J. Liu, Mater. Sci. Forum 879, 2187–2191 (2017)CrossRefGoogle Scholar
  21. 21.
    D. Zhao, C.R. Zhang, H.F. Hu, Y.D. Zhang, Compos. Sci. Technol. 71, 1392–1396 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Advanced Materials EngineeringChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.Division of Advanced Materials EngineeringKongju National UniversityCheonanRepublic of Korea

Personalised recommendations