Advertisement

Metals and Materials International

, Volume 25, Issue 3, pp 669–682 | Cite as

Analysis of Compression and Permeability Behavior of Porous Ti6Al4V by Computed Microtomography

  • Luis OlmosEmail author
  • Didier Bouvard
  • Jose Luis Cabezas-Villa
  • Jose Lemus-Ruiz
  • Omar Jiménez
  • Dante Arteaga
Article
  • 51 Downloads

Abstract

Porous materials were developed as a good alternative to replace different bones in the human body as they improve osseointegration, tissue ingrowth and simulate the mechanical properties of human bones. Such characteristics highly depend on the pore features and volume fraction. Samples with a pore volume fraction between 16 and 60% and a pore size distribution of 100–500 µm were analyzed by computed microtomography. 3D images acquisition was performed at 10 µm pixel resolution, which permitted to observe the complete sample. Features like size, shape, orientation, connectivity and pore coordination were determined from the 3D image analysis. Compression behavior was evaluated by interrupted compression testing and, after that, new 3D images were acquired. In order to evaluate permeability, numerical simulations of flow throughout the 3D images were carried out by using Avizo® software. It was found that shape and pore size distribution was similar in all samples, showing good distribution of the pore formers inside the matrix. Full connectivity of pores was obtained with 32% volume fraction and above, and the coordination number follows the Artz model. The pores showed a radial orientation, which induces anisotropy in the flow properties. The compression showed two different behaviors, pore closing and pore coalescence. Values of permeability match with those reported for bones as well as the anisotropy in the radial and vertical directions. It is concluded that the sample with 60 vol% of pores could be consider to be used for bone implants.

Keywords

Porosity Microtomography Compression Permeability 3D image analysis 

Notes

Acknowledgements

The authors would like to thank to the CIC of the UMSNH and ECOS M15P01 for the financial support and the facilities provided for the development of this study. We would also like to thank the Laboratory “LUMIR” Geosciences of the UNAM, Juriquilla, for the 3D image acquisition and processing.

References

  1. 1.
    X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Biomaterials (2016).  https://doi.org/10.1016/j.biomaterials.2016.01.012 Google Scholar
  2. 2.
    L.E. Murr, S.M. Gaytan, E. Martinez, F. Medina, R.B. Wicker, Int. J. Biomater. (2012).  https://doi.org/10.1155/2012/245727 Google Scholar
  3. 3.
    Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, Biomaterials (2006).  https://doi.org/10.1016/j.biomaterials.2005.11.025 Google Scholar
  4. 4.
    B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, Biomaterials (2006).  https://doi.org/10.1016/j.biomaterials.2006.04.041 Google Scholar
  5. 5.
    F.A. España, V.K. Balla, S. Bose, A. Bandyopadhyay, Mater. Sci. Eng. C (2010).  https://doi.org/10.1016/j.msec.2009.08.006 Google Scholar
  6. 6.
    A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Acta Biomater. (2008).  https://doi.org/10.1016/j.actbio.2008.02.009 Google Scholar
  7. 7.
    J. Ballarre, I. Manjubala, W.H. Schreiner, J.C. Orellano, P. Fratzl, S. Ceré, Acta Biomater. (2010).  https://doi.org/10.1016/j.actbio.2009.10.015 Google Scholar
  8. 8.
    S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N.A. Kadri, N.A.A. Osman, Sci. Technol. Adv. Mater. (2015).  https://doi.org/10.1088/1468-6996/16/3/033502 Google Scholar
  9. 9.
    B. Arifvianto, J. Zhou, Materials (2014).  https://doi.org/10.3390/ma7053588 Google Scholar
  10. 10.
    L. Reig, V. Amigó, D.J. Busquets, J.A. Calero, J. Mater. Process. Technol. (2012).  https://doi.org/10.1016/j.jmatprotec.2011.06.026 Google Scholar
  11. 11.
    Y. Torres, J.A. Rodríguez, S. Arias, M. Echeverry, S. Robledo, V. Amigo, J.J. Pavón, J. Mater. Sci. (2012).  https://doi.org/10.1007/s10853-012-6586-9 Google Scholar
  12. 12.
    J.L. Cabezas-Villa, L. Olmos, D. Bouvard, J. Lemus-Ruiz, O. Jiménez, J. Mater. Res. (2018).  https://doi.org/10.1557/jmr.2018.35 Google Scholar
  13. 13.
    J. Jakubowicz, G. Adamek, M. Dewidar, J. Porous Mater. (2013).  https://doi.org/10.1007/s10934-013-9696-0 Google Scholar
  14. 14.
    H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomaterials (2001).  https://doi.org/10.1016/S0142-9612(00)00275-1 Google Scholar
  15. 15.
    J.R. Woodard, A.J. Hilldore, S.K. Lan, C.J. Park, A.W. Morgan, J.A.C. Eurell, S.G. Clark, M.B. Wheeler, R.D. Jamison, A.J.W. Johnson, Biomaterials (2007).  https://doi.org/10.1016/j.biomaterials.2006.08.021 Google Scholar
  16. 16.
    H. Montazerian, E. Davoodi, M. Asadi-Eydivand, J. Kadkhodapour, M. Solati-Hashjin, Mater. Des. (2017).  https://doi.org/10.1016/j.matdes.2017.04.009 Google Scholar
  17. 17.
    V. Karageorgiou, D. Kaplan, Biomaterials (2005).  https://doi.org/10.1016/j.biomaterials.2005.02.002 Google Scholar
  18. 18.
    S.M. Kalantari, H. Arabi, S. Mirdamadi, S.A. Mirsalehi, J. Mech. Behav. Biomed. Mater. (2015).  https://doi.org/10.1016/j.jmbbm.2015.04.015 Google Scholar
  19. 19.
    Y. Torres, S. Lascano, J. Bris, J. Pavón, J.A. Rodriguez, Mater. Sci. Eng. C. (2014).  https://doi.org/10.1016/j.msec.2013.11.036 Google Scholar
  20. 20.
    Z. Zhang, D. Jones, S. Yue, P.D. Lee, J.R. Jones, C.J. Sutcliffe, E. Jones, Mater. Sci. Eng. C (2013).  https://doi.org/10.1016/j.msec.2013.05.050 Google Scholar
  21. 21.
    R. Singh, P.D. Lee, T.C. Lindley, R.J. Dashwood, E. Ferrie, T. Imwinkelried, Acta Biomater. (2009).  https://doi.org/10.1016/j.actbio.2008.06.014 Google Scholar
  22. 22.
    M.C. Varley, S. Neelakantan, T.W. Clyne, J. Dean, R.A. Brooks, A.E. Markaki, Acta Biomater. (2016).  https://doi.org/10.1016/j.actbio.2016.01.041 Google Scholar
  23. 23.
    M.R. Dias, P.R. Fernandes, J.M. Guedes, S.J. Hollister, J. Biomech. (2012).  https://doi.org/10.1016/j.jbiomech.2012.01.019 Google Scholar
  24. 24.
    M.D.M. Innocentini, R.K. Faleiros, R. Pisani Jr., I. Thijs, J. Luyten, S. Mullens, J. Porous Mater. (2010).  https://doi.org/10.1007/s10934-009-9331-2 Google Scholar
  25. 25.
    E.A. Nauman, K.E. Fong, T.M. Keaveny, Ann. Biomed. Eng. (1999).  https://doi.org/10.1114/1.195 Google Scholar
  26. 26.
    L. Olmos, T. Takahashi, D. Bouvard, C.L. Martin, L. Salvo, D. Bellet, M. Di Michiel, Philos. Mag. (2009).  https://doi.org/10.1080/14786430903150225 Google Scholar
  27. 27.
    C.L. Lin, J.D. Miller, Powder Technol. (2005).  https://doi.org/10.1016/j.powtec.2005.04.031 Google Scholar
  28. 28.
    L. Olmos, C.L. Martin, D. Bouvard, D. Bellet, M. Di Michiel, J. Am. Ceram. Soc. (2009).  https://doi.org/10.1111/j.1551-2916.2009.03037.x Google Scholar
  29. 29.
    L. Olmos, D. Bouvard, L. Salvo, D. Bellet, M. Di Michiel, J. Mater. Sci. (2014).  https://doi.org/10.1007/s10853-014-8117-3 Google Scholar
  30. 30.
    S.A. Saltykov, Stereometrische Metallographie Metallurgizdat (VEB, Leipzig, 1974)Google Scholar
  31. 31.
    A. Marmottant, L. Salvo, C.L. Martin, A. Mortensen, J. Eur. Ceram. Soc. (2008).  https://doi.org/10.1016/j.jeurceramsoc.2008.03.041 Google Scholar
  32. 32.
    A. Vagnon, J.P. Rivière, J.M. Missiaen, D. Bellet, M. Di Michiel, C. Josserond, D. Bouvard, Acta Mater. (2008).  https://doi.org/10.1016/j.actamat.2007.11.008 Google Scholar
  33. 33.
    X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B. Wicker, J. Mech. Behav. Biomed. Mater. (2012).  https://doi.org/10.1016/j.jmbbm.2012.10.005 Google Scholar
  34. 34.
    D. Bouvard, F.F. Lange, Acta Metall. Mater. (1991).  https://doi.org/10.1016/0956-7151(91)90041-X Google Scholar
  35. 35.
    J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, B. Thierry, J. Mater. Sci. Mater. Med. (1999).  https://doi.org/10.1023/A:1008973120918 Google Scholar
  36. 36.
    R.A. Perez, G. Mestres, Mater. Sci. Eng. C (2016).  https://doi.org/10.1016/j.msec.2015.12.087 Google Scholar
  37. 37.
    D.J. Griffon, M.R. Sedighi, D.V. Schaeffer, J.A. Eurell, A.L. Johnson, Acta Biomater. (2006).  https://doi.org/10.1016/j.actbio.2005.12.007 Google Scholar
  38. 38.
  39. 39.
    L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge University Press, Cambridge, 1999), p. 175Google Scholar
  40. 40.
    R. Singh, P.D. Lee, T.C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, T. Imwinkelried, R.J. Dashwood, Acta Biomater. (2010).  https://doi.org/10.1016/j.actbio.2009.11.032 Google Scholar
  41. 41.
    I. Farias, L. Olmos, O. Jimenez, H.J. Vergara-Hernández, D. Bouvard, P. Gárnica, M. Flores, Mater. Res. Ibero. Am. J. (2017).  https://doi.org/10.1590/1980-5373-mr-2017-0510 Google Scholar
  42. 42.
    M.J. Grimm, J.L. Williams, J. Biomech. (1997).  https://doi.org/10.1016/S0021-9290(97)00016-X Google Scholar
  43. 43.
    F.J. O’Brien, B.A. Harley, M.A. Waller, I.V. Yannas, L.J. Gibson, P.J. Prendergast, Technol. Health Care 15(1), 3 (2007)Google Scholar
  44. 44.
    C.M. Murphy, M.G. Haugh, F.J. O’Brien, Biomaterials (2010).  https://doi.org/10.1016/j.biomaterials.2009.09.063 Google Scholar
  45. 45.
    K. Kieswetter, Z. Schwartz, D.D. Dean, B.D. Boyan, Crit. Rev. Oral Biol. Med. (1996).  https://doi.org/10.1177/10454411960070040301 Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.INICITUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.SIMaPUniv. Grenoble Alpes, CNRSGrenobleFrance
  3. 3.IIMMUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  4. 4.Departamento de Ingeniería de ProyectosUniversidad de GuadalajaraZapopanMexico
  5. 5.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations