Metals and Materials International

, Volume 25, Issue 3, pp 723–732 | Cite as

On the Densification Kinetics of Metallic Powders Under Hot Uniaxial Pressing

  • J. M. Montes
  • F. G. Cuevas
  • J. Cintas
  • F. TerneroEmail author
  • E. S. Caballero


A new model undertaking the densification kinetics of uniaxially pressed metallic powders at constant temperature is proposed. This model is developed according to the power law of creep, and the expression of the ‘net pressure’ derived by the authors in a previous work. This net pressure describes the ‘geometrical hardening’ experienced by the powder mass, during compression. In order to validated the model three different powders were uniaxially pressed, aluminium, tin and lead, being obtained data from hot compaction experiments. The similarity between the model predicted curves and the experimental data is quite acceptable. In addition, the goodness of the model is contrasted with two other theoretical models addressing the same problem. The approach developed can be useful to model hot uniaxial pressing and electrical consolidation processes, which start with loose powders, i.e., not previously cold compacted powders.


Densification creep Modelling Metal powders FAST 



The authors grateful to FEDER/MEyC, Madrid, for funding this research within the framework of Projects DPI2015-69550-C2-1-P and DPI2015-69550-C2-2-P. The authors also wish to thank the technicians J. Pinto, M. Madrid and M. Sanchez for experimental assistance.


  1. 1.
    R.W. Evans, B. Wilshire, Introduction to Creep (The Institute of Materials, London, 1993)Google Scholar
  2. 2.
    H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps. The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982), pp. 1–30Google Scholar
  3. 3.
    D.W. Readey, T. Quadir, J. Lee, Effects of vapor transport on microstructure development, in Ceramic Microstructures’86, vol. 21, Materials Science Research, ed. by J.A. Pask, A.G. Evans (Springer, Boston, 1987), pp. 485–496CrossRefGoogle Scholar
  4. 4.
    P.J. James, Powder Metall. Int. 4, 1–8 (1972)Google Scholar
  5. 5.
    R.M. Spriggs, S.K. Dutta, Sci. Sint. 6, 1–7 (1974)Google Scholar
  6. 6.
    D.S. Wilkinson, M.F. Ashby, in Sintering and Catalysis, ed. by G.C. Kuczynski (Plenum Press, New York, 1975), pp. 473–494CrossRefGoogle Scholar
  7. 7.
    D.S. Wilkinson, M.F. Ashby, Acta Metall. 23, 1277–1285 (1977)CrossRefGoogle Scholar
  8. 8.
    F.B. Swinkels, D.S. Wilkinson, E. Arzt, M.F. Ashby, Acta Metall. 31(11), 1829–1840 (1983)CrossRefGoogle Scholar
  9. 9.
    L. Ramqvist, Powder Metall. 9, 1–25 (1996)CrossRefGoogle Scholar
  10. 10.
    E. Artz, M.F. Ashby, K.E. Easterling, Metall. Trans. A 14A, 211–221 (1983)Google Scholar
  11. 11.
    J. Kevin McCoy, Metall. Trans. A 16A, 1903–1904 (1983)Google Scholar
  12. 12.
    M. Dietze, H.P. Buchkremer, D. Stöver, Met. Powder Rep. 46(10), 30–35 (1991)CrossRefGoogle Scholar
  13. 13.
    J.M. Montes, F.G. Cuevas, J. Cintas, J.A. Rodríguez, E.J. Herrerra, The equivalent simple cubic system, in Trends in Materials Science Research, ed. by B.M. Caruta (Nova Publishers, USA, 2005), pp. 157–190Google Scholar
  14. 14.
    J.M. Montes, F.G. Cuevas, J. Cintas, Appl. Phys. A 99, 751–761 (2010)CrossRefGoogle Scholar
  15. 15.
    MPIF Standard 46, Determination of tap density of metal powders, in Standard Test Methods for Metal Powders and Powder Metallurgy Products, ed. by Metal Powder Industries Federation (MPIF) (MPIF, Princeton, NJ, USA, 2002)Google Scholar
  16. 16.
    J. Rojek, S. Nosewicz, K. Jurczak, M. Chmielewski, K. Bochenek, K. Pietrzak, Comput. Part. Mech. 3, 513–524 (2016)CrossRefGoogle Scholar
  17. 17.
    L.H. Han, J.A. Elliott, A.C. Bentham, A. Mills, G.E. Amidon, B.C. Hancock, Int. J. Solids Struct. 45(10), 3088–3106 (2008)CrossRefGoogle Scholar
  18. 18.
    P. Feltham, J.D. Meakin, Acta Metall. 7, 614–627 (1959)CrossRefGoogle Scholar
  19. 19.
    O.D. Sherby, J.L. Lytton, J.E. Dorn, Acta Met. 5, 219–227 (1957)CrossRefGoogle Scholar
  20. 20.
    J.M. Montes, F.G. Cuevas, J. Cintas, F. Ternero, E.S. Caballero, Powder Metall. 61(3), 219–230 (2018)CrossRefGoogle Scholar
  21. 21.
    G. Maizza, A. Tassinari, Modelling of micro/macro densification phenomena of Cu powder during capacitor discharge sintering. Excerpt from the Proceedings of the COMSOL Conference 2009 Milan, ItalyGoogle Scholar
  22. 22.
    M.Y. Wu, O.D. Sherby, Acta Metall. 32(9), 1561–1572 (1984)CrossRefGoogle Scholar
  23. 23.
    E.A. Brandes (ed.), Smithells Metals Reference Book, Sixth edn. (Butterworths & Co Publishers, London, 1983)Google Scholar
  24. 24.
    M.M. Myshlyaev, W.A. Stepanov, V.V. Shpeizman, Phys. Stat. Sol. A 8, 393–402 (1971)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringEscuela Técnica Superior de Ingeniería, Universidad de SevillaSevilleSpain
  2. 2.Department of Chemical Engineering, Physical Chemistry and Materials ScienceEscuela Técnica Superior de Ingeniería, Universidad de HuelvaHuelvaSpain

Personalised recommendations