Advertisement

Metals and Materials International

, Volume 25, Issue 3, pp 713–722 | Cite as

Short-Term Creep Data Based Long-Term Creep Life Predictability for Grade 92 Steels and Its Microstructural Basis

  • Seen Chan Kim
  • Jae-Hyeok Shim
  • Woo-Sang Jung
  • Yoon Suk ChoiEmail author
Article
  • 87 Downloads

Abstract

Long-term creep life (5000–100,000 h) predictabilities, based on the short-term creep life data (~ 5000 h), for Grade 92 steel were investigated among major creep life prediction models, Larson–Miller parameter (LMP), normalized power law (NPL) and Wilshire models. The NPL and Wilshire models showed superior short-term creep data based long-term creep life predictabilities to the LMP model. In particular, the Wilshire model showed relatively accurate predictions (within an error range of 7%–10%), which seemed to be due to reasonable coupling of the normalized stress with the temperature-dependent rupture life term in a form of the cumulative distribution function. Both NPL and Wilshire models, calibrated by the short-term creep life data, showed a transition in creep mechanism at a similar normalized stress. Thermodynamics-based kinetic simulation (MatCalcTM) results for major precipitates (M23C6, MX and Z phases) of Grade 92 steel suggested that the creep transition is associated with coarsening of M23C6 precipitates at high temperatures (above 600 °C), which led to the degradation of the creep property.

Keywords

Short-term creep life Long-term creep life Precipitates Simulations Grade 92 steel 

Notes

Acknowledgements

The authors would like to acknowledge the financial support from the R&D Convergence Program of National Research Council of Science and Technology (Grant No. CAP-16-08-KITECH) of Republic of Korea.

References

  1. 1.
    Y.Y. Dang, X.B. Zhao, Y. Yuan, H.F. Ying, J.T. Lu, Z. Yang, Y. Gu, Mater. High Temp. 33, 1 (2016)CrossRefGoogle Scholar
  2. 2.
    F.R. Larson, J. Miller, Trans ASME. 74, 765 (1952)Google Scholar
  3. 3.
    B. Wilshire, A.J. Battenbough, Mater. Sci. Eng., A 443, 156 (2007)CrossRefGoogle Scholar
  4. 4.
    M.T. Whittaker, B. Wilshire, Mater. Sci. Technol. 27, 642 (2011)CrossRefGoogle Scholar
  5. 5.
    B. Wilshire, P.J. Scharning, R. Hurst, Mater. Sci. Eng., A 510–511, 3 (2009)CrossRefGoogle Scholar
  6. 6.
    B. Wilshire, P.J. Scharning, Int. Mater. Rev. 53, 91 (2008)CrossRefGoogle Scholar
  7. 7.
    S.J. Williams, M.R. Bache, B. Wilshire, Mater. Sci. Technol. 26, 1332 (2010)CrossRefGoogle Scholar
  8. 8.
    B. Wilshire, P.J. Scharning, J. Mater. Sci. 43, 3992 (2008)CrossRefGoogle Scholar
  9. 9.
    B. Wilshire, M.T. Whittaker, Acta Mater. 57, 4115 (2009)CrossRefGoogle Scholar
  10. 10.
    B. Wilshire, P.J. Scharning, Scr. Mater. 56, 701 (2007)CrossRefGoogle Scholar
  11. 11.
    M.T. Whittaker, B. Wilshire, Metall. Mater. Trans. A 44, 136 (2013)CrossRefGoogle Scholar
  12. 12.
    M.T. Whittaker, B. Wilshire, Mater. Sci. Eng., A 527, 4932 (2010)CrossRefGoogle Scholar
  13. 13.
    M.T. Whittaker, W.J. Harrison, Mater. High Temp. 31, 233 (2014)CrossRefGoogle Scholar
  14. 14.
    Q. Wang, M. Yang, X.L. Song, J. Jia, Z.D. Xiang, Metall. Mater. Trans. A 47, 3479 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Yang, Q. Wang, X.L. Song, J. Jia, Z.D. Xiang, Int. J. Mater. Res. 107, 133 (2016)CrossRefGoogle Scholar
  16. 16.
    K. Kimura, Y. Toda, H. Kushima, K. Sawada, Int. J. Press. Vessel. Pip. 87, 282 (2010)CrossRefGoogle Scholar
  17. 17.
    S. S. Manson and A. M. Haferd, NASA-TN-2890 (1953)Google Scholar
  18. 18.
    R.L. Orr, O.D. Sherby, J.E. Dorn, Trans ASM. 46, 113 (1954)Google Scholar
  19. 19.
    V. Cedro, C. Garcia, M. Render, Materials (Basel). 11, 1585 (2018)CrossRefGoogle Scholar
  20. 20.
    H.P. Yao, Y.R. Zhao, X.L. Song, J. Jia, Z.D. Xiang, Eur. J. Mech. A/Solids 73, 57 (2019)CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, H. Yao, X. Song, J. Jia, Z. Xiang, Met. Mater. Int. 24, 51 (2018)CrossRefGoogle Scholar
  22. 22.
    E. Isaac Samuel, B.K. Choudhary, D.P. Rao Palaparti, M.D. Mathew, Procedia Eng. 55, 64 (2013)CrossRefGoogle Scholar
  23. 23.
    P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, A. Czyrska-Filemonowicz, Acta Mater. 45, 4901 (1997)CrossRefGoogle Scholar
  24. 24.
    H. Nickel, P.J. Ennis, W.J. Quadakkers, Miner. Process. Extr. Metall. Rev. 22, 181 (2001)CrossRefGoogle Scholar
  25. 25.
    NIMS creep data sheet No.48A (2012)Google Scholar
  26. 26.
    M. Tamura, F. Abe, K. Shiba, H. Sakasegawa, H. Tanigawa, Metall. Mater. Trans. A 44, 2645 (2013)CrossRefGoogle Scholar
  27. 27.
    T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Panneer Selvi, V. Maduraimuthu, M.D. Mathew, Mater. Sci. Eng., A 591, 111 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Hald, Int. J. Press. Vessel. Pip. 85, 30 (2008)CrossRefGoogle Scholar
  29. 29.
    T. Sakthivel, S.P. Selvi, P. Parameswaran, K. Laha, Mater. High Temp. 33, 33 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Svoboda, F.D. Fischer, P. Fratzl, E. Kozeschnik, Mater. Sci. Eng., A 385, 166 (2004)Google Scholar
  31. 31.
    E. Kozeschnik, J. Svoboda, F.D. Fischer, CALPHAD. 28, 379 (2004)CrossRefGoogle Scholar
  32. 32.
  33. 33.
    S.H. Song, R.G. Faulkner, P.E.J. Flewitt, Mater. Sci. Eng., A 281, 23 (2000)CrossRefGoogle Scholar
  34. 34.
    J.H. Shim, E. Kozeschnik, W.S. Jung, S.C. Lee, D.I. Kim, J.Y. Suh, Y.S. Lee, Y.W. Cho, CALPHAD. 34, 105 (2010)CrossRefGoogle Scholar
  35. 35.
    Z. Abdallah, V. Gray, M. Whittaker, K. Perkins, Materials (Basel). 7, 3371 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Cadek, Creep in metallic materials (Elsevier, New York, 1988)Google Scholar
  37. 37.
    N.Q. Vo, C.H. Liebscher, M.J.S. Rawlings, M. Asta, D.C. Dunand, Acta Mater. 71, 89 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Sakthivel, S.P. Selvi, K. Laha, Mater. Sci. Eng., A 640, 61 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Seen Chan Kim
    • 1
  • Jae-Hyeok Shim
    • 2
  • Woo-Sang Jung
    • 2
  • Yoon Suk Choi
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringPusan National UniversityBusanRepublic of Korea
  2. 2.High Temperature Energy Materials Research Center, Korea Institute of Science and TechnologySeoulRepublic of Korea

Personalised recommendations