Metals and Materials International

, Volume 25, Issue 3, pp 627–632 | Cite as

Oxidation of Titanium Matrix Composites Reinforced with (TiB + TiC) Particulates

  • Young-Jig Kim
  • Poonam Yadav
  • Junhee HahnEmail author
  • Xiao Xiao
  • Dong Bok LeeEmail author


Titanium matrix composites reinforced with (5, 10, 20) vol% (TiB + TiC) particulates were in situ synthesized using melting-investment casting method by reacting Ti with B4C powder. Their oxidation behavior was studied at 800–1000 °C in air. Formed scales consisted of transient TiO3 and stable rutile-TiO2. More dispersed (TiB + TiC) particulates had higher oxidation resistance due to strong Ti–B and Ti–C bonding which required higher activation energy for oxidation compared to Ti–Ti bonding in the matrix. However, such increment in oxidation resistance was limited by the formation of semi-protective titanium oxides, volatile B2O3, and CO2 gas. With increment of (TiB + TiC), scales progressively became thinner, thus improving scale adherence.


Oxidation Titanium matrix composite TiB TiC 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03028792).


  1. 1.
    J.S. Kim, K.M. Lee, D.H. Cho, Y.Z. Lee, Wear 301, 562 (2013)CrossRefGoogle Scholar
  2. 2.
    B.J. Choi, Y.J. Kim, Mater. Trans. 52, 1926 (2011)CrossRefGoogle Scholar
  3. 3.
    H.T. Tsang, C.G. Chao, C.Y. Ma, Scr. Mater. 37, 1359 (1997)CrossRefGoogle Scholar
  4. 4.
    Y. Qin, W. Lu, D. Zhang, J. Qin, B. Ji, Mater. Sci. Eng. A 404, 42 (2005)CrossRefGoogle Scholar
  5. 5.
    L.J. Huang, L. Geng, Y. Fu, B. Kaveendran, H.X. Peng, Corros. Sci. 69, 175 (2013)CrossRefGoogle Scholar
  6. 6.
    H. Hu, L. Huang, L. Geng, B. Liu, B. Wang, Corros. Sci. 85, 7 (2014)CrossRefGoogle Scholar
  7. 7.
    E. Zhang, G. Zeng, S. Zeng, Scr. Mater. 46, 811 (2002)CrossRefGoogle Scholar
  8. 8.
    X. Qian, Y. Li, Y. Sun, X. He, C. Zhu, J. Alloys Compd. 491, 386 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Yang, L.M. Pan, W. Gu, X.B. Gu, K. Song, T. Qiu, S.M. Zhu, Ceram. Int. 38, 159 (2012)CrossRefGoogle Scholar
  10. 10.
    D.B. Lee, M.H. Kim, C.W. Yang, S.H. Lee, M.H. Yang, Y.J. Kim, Oxid. Met. 56, 215 (2001)CrossRefGoogle Scholar
  11. 11.
    Y. Qin, D. Zhang, W.J. Lu, W. Pan, J. Alloys Compd. 455, 369 (2008)CrossRefGoogle Scholar
  12. 12.
    Y.X. Qin, D. Zhang, W.J. Lu, W. Pan, Mater. Lett. 60, 2339 (2006)CrossRefGoogle Scholar
  13. 13.
    Z. Li, W. Gao, J. Liang, D.L. Zhang, Mater. Lett. 57, 1970 (2003)CrossRefGoogle Scholar
  14. 14.
    A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion (ASM International, Russell Township, 2002), pp. 98–100Google Scholar
  15. 15.
    F.H. Froes, C. Suryanarayana, in Physical Metallurgy and Processing of Intermetallic Compounds, ed. by N.S. Stoloff, V.K. Sikka (Chapman & Hall, Boca Raton, 1996), pp. 297–350CrossRefGoogle Scholar
  16. 16.
    N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd edn. (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  17. 17.
    P. Kofstad, J. Less-Common Met. 12, 449 (1967)CrossRefGoogle Scholar
  18. 18.
    H. Holleck, J. Vac. Sci. Technol. A 4, 2661 (1986)CrossRefGoogle Scholar
  19. 19.
    M. Mizuno, I. Tanaka, H. Adachi, Phys. Rev. B 59, 15033 (1999)CrossRefGoogle Scholar
  20. 20.
    I. Barin, Thermochemical Data of Pure Substances (VCH, Weinheim, 1989)Google Scholar
  21. 21.
    TSRCh. Murthy, R. Balasubramaniam, B. Basu, A.K. Suri, M.N. Mungole, J. Eur. Ceram. Soc. 26, 187 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Center for Energy Materials MetrologyKorea Research Institute of Standards and ScienceDaejeonRepublic of Korea

Personalised recommendations