Advertisement

Metals and Materials International

, Volume 25, Issue 3, pp 633–640 | Cite as

Microstructure and Properties of Novel Heat Resistant Al–Ce–Cu Alloy for Additive Manufacturing

  • D. R. Manca
  • A. Yu. ChuryumovEmail author
  • A. V. Pozdniakov
  • A. S. Prosviryakov
  • D. K. Ryabov
  • A. Yu. Krokhin
  • V. A. Korolev
  • D. K. Daubarayte
Article

Abstract

The microstructure and properties of the novel heat resistant Al–3Ce–7Cu alloy produced by selective laser melting were investigated. Fine Al11Ce3 and Al6.5CeCu6.5 eutectic phases were found in the microstructure. Annealing at temperatures in the 250–400 °C range leads to a decrease in the hardness. Hardness has larger values after annealing at 350 and 400 °C than at 250 °C due to the precipitation of nanosized particles. The low hardness after quenching and aging at 190 °C is caused by quench stress relief and the absence of aging hardening because of poor solid solution. The as-printed yield strength, ultimate tensile strength and elongation are 274 MPa, 456 MPa and 4.4%, respectively. High mechanical properties of the Al–3Ce–7Cu alloy were demonstrated by high temperature tension and compression tests.

Keywords

SLM Alloy Microstructure Hardness Properties Aluminum Copper Cerium Manufacturing Strength 

Notes

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST ‘‘MISiS” and within the framework of the project for creation of high-tech manufacturing ‘‘Creation of material-effective manufacturing of aluminum alloy powders and development of additive technologies for the produce of parts for aircraft control systems”.

Compliance with Ethical Standards

Conflict of interest

No potential conflict of interest was reported by the authors.

References

  1. 1.
    E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)CrossRefGoogle Scholar
  2. 2.
    C. Galy, E. Le Guen, E. Lacoste, C. Arvieu, Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences. Addit. Manuf. 22, 165–175 (2018)CrossRefGoogle Scholar
  3. 3.
    K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt, New developments of laser processing aluminium alloys via additive manufacturing technique. Phys. Procedia A 12A, 393–401 (2011)CrossRefGoogle Scholar
  4. 4.
    E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Thijs, K. Kempen, J.-P. Kruth, J. van Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 61(5), 1809–1819 (2013)CrossRefGoogle Scholar
  6. 6.
    F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano, P. Fino, Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67(9–12), 2743–2751 (2013)CrossRefGoogle Scholar
  7. 7.
    N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1–4, 77–86 (2014)CrossRefGoogle Scholar
  8. 8.
    N. Read, W. Wang, K. Essa, M.M. Attallah, Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater. Des. 65, 417–424 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Ma, Y. Jia, K.G. Prashanth, S. Scudino, Z. Yu, J. Eckert, Microstructure and phase formation in Ale20Sie5Fee3Cue1Mg synthesized by selective laser melting. J. Alloys Compd. 657, 430–435 (2016)CrossRefGoogle Scholar
  10. 10.
    K. Schmidtke, F. Palm, A. Hawkins, C. Emmelmann, Process and mechanical properties: applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys. Procedia 12, 369–374 (2011)CrossRefGoogle Scholar
  11. 11.
    A.B. Spierings, K. Dawson, P. Dumitraschkewitz, S. Pogatscher, K. Wegener, Microstructure characterization of SLM-processed Al–Mg–Sc–Zr alloy in the heat treated and HIPed condition. Addit. Manuf. 20, 173–181 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Shi, P. Rometsch, K. Yang, F. Palm, X. Wu, Characterisation of a novel Sc and Zr modified Al–Mg alloy fabricated by selective laser melting. Mater. Lett. 196, 347–350 (2017)CrossRefGoogle Scholar
  13. 13.
    A.V. Pozdniakov, A.Yu. Churyumov, I.S. Loginova, D.K. Daubarayte, D.K. Ryabov, V.A. Korolev, Microstructure and properties of novel AlSi11CuMn alloy manufactured by selective laser melting. Mater. Lett. 225, 33–36 (2018)CrossRefGoogle Scholar
  14. 14.
    I.I. Novikov, Goryachelomkosttsvetnykhmetallovisplavov (Hot Shortness of Non-ferrous Metals and Alloys) (Nauka, Moscow, 1966)Google Scholar
  15. 15.
    D.G. Eskin, Suyitno, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog. Mater. Sci. 49, 629–711 (2004)CrossRefGoogle Scholar
  16. 16.
    V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, Alcoa Center, 2007), p. 530pGoogle Scholar
  17. 17.
    ASM International, ASM Handbook. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2 (The Materials Information Company, Materials Park, 2010)Google Scholar
  18. 18.
    V.S. Zolotorevskiy, A.V. Pozdniakov, Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range. Int. J. Cast Metals Res. 27(4), 193–198 (2014)CrossRefGoogle Scholar
  19. 19.
    A.V. Pozdniakov, V.S. Zolotorevskiy, O.I. Mamzurina, Determining the hot cracking index of Al–Mg–Zn casting alloys calculated using the effective solidification range. Int. J. Cast Metals Res. 28(5), 318–321 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Brice, R. Shenoy, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing. Mater. Sci. Eng. A 648, 9–14 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Plotkowski, O. Rios, N. Sridharan, Z. Sims, K. Unocic, R.T. Ott, R.R. Dehoff, S.S. Babu, Evaluation of an Al–Ce alloy for laser additive manufacturing. Acta Mater. 126, 507–519 (2017)CrossRefGoogle Scholar
  22. 22.
    V.S. Zolotorevskiy, A.V. Pozdniakov, A.Yu. Churyumov, Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation. Phys. Metals Metallogr. 113(11), 1052–1060 (2012)CrossRefGoogle Scholar
  23. 23.
    N.A. Belov, A.V. Khvan, A.N. Alabin, Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner. Mater. Sci. Forum 519–521, 395–400 (2006)CrossRefGoogle Scholar
  24. 24.
    N.A. Belov, A.V. Khvan, The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner. Acta Mater. 55, 5473–5482 (2007)CrossRefGoogle Scholar
  25. 25.
    A.V. Khvan, Optimization of the phase composition of high-tech aluminum alloys with a composite structure based on Ce- and Ca-containing eutectics, Ph.D. thesis, NUST MISIS, Moscow, 2008Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Physical Metallurgy of Non-Ferrous MetalsNational University of Science and Technology “MISiS”MoscowRussian Federation
  2. 2.Department of the Development of New Products and Foundry TechnologiesRUSAL Global Management B.V.MoscowRussian Federation
  3. 3.Department of Additive TechnologiesLLC «Light Materials and Technologies Institute» UC RUSALMoscowRussian Federation

Personalised recommendations