Comparative Analysis of CRISPR Loci Found in Streptomyces Genome Sequences

  • Jinqi Zhang
  • Xiaobin Li
  • Zixin Deng
  • Hong-Yu OuEmail author
Original Research Article


The interspaced short palindromic repeats (CRISPR) system is an immune system widely distributed in prokaryotes, resisting the invasion of the foreign mobile genetic elements like phages or plasmids. In this study, we present the comparative analysis of 182 CRISPR loci found in 46 publicly available complete genome sequences of Streptomyces. Overall, nine direct repeats (DRs) groups are identified while all the 2104 spacers are divided into three main groups according to the multiple sequence alignment. Only 11 spacers are identical with parts of 10 plasmid sequences, which indicates a possible origin. The cas gene clusters near the CRISPR arrays are found to mainly belong to the I–E subtype. These CRISPR loci might play an important role in the genome evolution of Streptomyces.


Streptomyces CRISPR loci Direct repeats Spacers Cas gene cluster 



This work was supported by the National Key R&D Program of China [2017YFC1600100 to H.Y.O.] and the National Natural Science Foundation of China [31371261 to H.Y.O., 21661140002 to Z.D.].

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Supplementary material

12539_2018_301_MOESM1_ESM.pdf (540 kb)
Supplementary material 1 (PDF 541 KB)


  1. 1.
    Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science 322:1843–1845CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform 8:172CrossRefGoogle Scholar
  3. 3.
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yang S, Liu J, Shao F, Wang P, Duan G et al (2015) Analysis of the features of 45 identified CRISPR loci in 32 Staphylococcus aureus. Biochem Biophys Res Commun 464:894–900CrossRefPubMedGoogle Scholar
  5. 5.
    Gasiunas G, Sinkunas T, Siksnys V (2014) Molecular mechanisms of CRISPR-mediated microbial immunity. Cell Mol Life Sci 71:449–465CrossRefPubMedGoogle Scholar
  6. 6.
    Horvath P, Barrangou R (2010) CRISPR/Cas the immune system of bacteria and archaea. Science 327:167–170CrossRefPubMedGoogle Scholar
  7. 7.
    Rossi CC, Souza-Silva T, Araujo-Alves AV, Giambiagi-deMarval M (2017) CRISPR-Cas systems features and the gene-reservoir role of coagulase-negative Staphylococci. Front Microbiol 8:1545CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Amitai G, Sorek R (2016) CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol 14:67–76CrossRefPubMedGoogle Scholar
  9. 9.
    Rahmatabadi SS, Nezafat N, Negahdaripour M, Hajighahramani N, Morowvat MH, Ghasemi Y (2016) Studying the features of 57 confirmed CRISPR loci in 29 strains of Escherichia coli. J Basic Microbiol 56:645–653CrossRefPubMedGoogle Scholar
  10. 10.
    Casey A, Jordan K, Coffey A, Fox EM, McAuliffe O (2016) Comparative genomic analysis of two serotype 1/2b Listeria monocytogenes isolates from analogous environmental niches demonstrates the influence of hypervariable hotspots in defining pathogenesis. Front Nutr 3:54CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qiu Y, Wang S, Chen Z, Guo Y, Song Y (2016) An active type I-E CRISPR-Cas system identified in Streptomyces avermitilis. PLoS One 11:e0149533CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kämpfer P (2006) The family Streptomycetaceae, part I: taxonomy. In: The prokaryotes. Springer, New York, NY, pp 538–604CrossRefGoogle Scholar
  13. 13.
    Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. Bergey’s manual of systematic bacteriology. Springer, New YorkGoogle Scholar
  14. 14.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  16. 16.
    Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM (2013) CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol 10:817–827CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Medema MH, Takano E, Breitling R (2013) Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol Biol Evol 30:1218–1223CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  20. 20.
    Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dyson P (2011) Streptomyces: molecular biology and biotechnology. Horizon Scientific Press, PooleGoogle Scholar
  22. 22.
    Horvath P, Coute-Monvoisin AC, Romero DA, Boyaval P, Fremaux C, Barrangou R (2009) Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 131:62–70CrossRefPubMedGoogle Scholar
  23. 23.
    Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H et al (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophiles. J Bacteriol 190:1401–1412CrossRefPubMedGoogle Scholar
  24. 24.
    Nakamura Y, ltoh T, Matsuda H et al (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 34:760–766CrossRefGoogle Scholar
  25. 25.
    Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721CrossRefPubMedGoogle Scholar
  26. 26.
    Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against virus in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  27. 27.
    Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations