EGFR gene regulation in colorectal cancer cells by garlic phytocompounds with special emphasis on S-Allyl-L-Cysteine Sulfoxide

  • Nabarun RoyEmail author
  • P. A. Nazeem
  • T. D. Babu
  • P. S. Abida
  • Arunaksharan Narayanankutty
  • Ravisankar Valsalan
  • P. A. Valsala
  • Achuthan C. Raghavamenon
Original Research Article


Colorectal cancer is one among the most common cancers in the world and a major cause of cancer related deaths. Similar to other cancers, colorectal carcinogenesis is often associated with over expression of genes related to cell growth and proliferation, especially Epidermal Growth Factor Receptor (EGFR). There is an increasing attention towards the plant derived compounds in prevention of colorectal carcinogenesis by downregulating EGFR. Among plants, garlic (Allium sativum L.) is emerging with anticancer properties by virtue of its organosulfur compounds. The present study was aimed to analyze the interaction ability of garlic compounds in the active region of EGFR gene by in silico molecular docking studies and in vitro validation. This was conducted using the Discovery studio software version 4.0. Among the tested compounds, s-allyl-l-cysteine-sulfoxide (SACS)/alliin showed higher affinity towards EGFR. Furthermore, wet lab analysis using cell viability test and EGFR expression analysis in colorectal cancer cells confirmed its efficacy as a potent anticancer agent.


Colorectal cancer Allium sativum EGFR S-allyl-L-cysteine-sulfoxide Molecular docking Discovery studio 



Nabarun Roy acknowledges the financial support by the Department of Biotechnology, Ministry of Science and Technology, Govt. of India, through its HRD programme (BT/DI/03/014/2002). Arunaksharan Narayanankutty is thankful to the Council of Scientific and Industrial Research for Senior Research Fellowship (09/869 (0012)/2012-EMR-I).

Compliance with ethical standards

Conflict of interest

The authors declare to have no conflict of interest in the present study.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics. CA Cancer J Clin 65(1):5–29. doi: 10.3322/caac.21254 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pourhoseingholi MA (2012) Increased burden of colorectal cancer in Asia. World J Gastrointest Oncol 4(4):68–70. doi: 10.4251/wjgo.v4.i4.68 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Brenner H, Kloor M, Pox CP (2014) Colorectal cancer. The Lancet 383(9927):1490–1502. doi: 10.1016/S0140-6736(13)61649-9 CrossRefGoogle Scholar
  4. 4.
    Azeem S, Gillani SW, Siddiqui A, Jandrajupalli SB, Poh V, Syed Sulaiman SA (2015) Diet and colorectal cancer risk in Asia—a systematic review. Asian Pac J Cancer Prev 16(13):5389–5396CrossRefGoogle Scholar
  5. 5.
    Duffy MJ, Lamerz R, Haglund C, Nicolini A, Kalousova M, Holubec L, Sturgeon C (2014) Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update. Int J Cancer 134(11):2513–2522. doi: 10.1002/ijc.28384 CrossRefPubMedGoogle Scholar
  6. 6.
    Luo H, Xu R (2014) Predictive and prognostic biomarkers with therapeutic targets in advanced colorectal cancer. World J Gastroenterol 20(14):3858–3874. doi: 10.3748/wjg.v20.i14.3858 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pabla B, Bissonnette M, Konda VJ (2015) Colon cancer and the epidermal growth factor receptor: current treatment paradigms, the importance of diet, and the role of chemoprevention. World J Clin Oncol 6(5):133–141. doi: 10.5306/wjco.v6.i5.133 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJ, Soundharrajan I, Govindan N (2014) Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharm Sin B 4(3):173–181. doi: 10.1016/j.apsb.2014.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Maru GB, Hudlikar RR, Kumar G, Gandhi K, Mahimkar MB (2016) Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: from experimental models to clinical trials. World. J Biol Chem 7(1):88–99. doi: 10.4331/wjbc.v7.i1.88 CrossRefGoogle Scholar
  10. 10.
    Cao HX, Zhu KX, Fan JG, Qiao L (2014) Garlic-derived allyl sulfides in cancer therapy. Anticancer Agents Med Chem 14(6):793–799. doi: 10.2174/1871520614666140521120811 CrossRefPubMedGoogle Scholar
  11. 11.
    Adaki S, Adaki R, Shah K, Karagir A (2014) Garlic: review of literature. Indian J Cancer 51(4):577–581. doi: 10.4103/0019-509X.175383 CrossRefPubMedGoogle Scholar
  12. 12.
    Nicastro HL, Ross SA, Milner JA (2015) Garlic and onions: their cancer prevention properties. Cancer Prev Res (Phila) 8(3):181–189. doi: 10.1158/1940-6207.CAPR-14-0172 CrossRefGoogle Scholar
  13. 13.
    Zheng J, Zhou Y, Li Y, Xu D, Li S, Li H (2016) Spices for prevention and treatment of cancers. Nutrients 8(8):495. doi: 10.3390/nu8080495 CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Butt MS, Naz A, Sultan MT, Qayyum MM (2013) Anti-oncogenic perspectives of spices/herbs: a comprehensive review. EXCLI J 12:1043–1065PubMedPubMedCentralGoogle Scholar
  15. 15.
    Yun HM, Ban JO, Park KR, Lee CK, Jeong HS, Han SB, Hong JT (2014) Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther 142(2):183–195. doi: 10.1016/j.pharmthera.2013.12.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Meng S, Zhang X, Giovannucci EL, Ma J, Fuchs CS, Cho E (2013) No association between garlic intake and risk of colorectal cancer. Cancer Epidemiol 37(2):152–155. doi: 10.1016/j.canep.2012.11.002 CrossRefPubMedGoogle Scholar
  17. 17.
    Hu JY, Hu YW, Zhou JJ, Zhang MW, Li D, Zheng S (2014) Consumption of garlic and risk of colorectal cancer: an updated meta-analysis of prospective studies. World J Gastroenterol 20(41):15413–15422. doi: 10.3748/wjg.v20.i41.15413 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chiavarini M, Minelli L, Fabiani R (2016) Garlic consumption and colorectal cancer risk in man: a systematic review and meta-analysis. Public Health Nutr 19(2):308–317. doi: 10.1017/S1368980015001263 CrossRefPubMedGoogle Scholar
  19. 19.
    Barlow DJ, Buriani A, Ehrman T, Bosisio E, Eberini I, Hylands PJ (2012) In silico studies in Chinese herbal medicines’ research: evaluation of in-silico methodologies and phytochemical data sources, and a review of research to date. J Ethnopharmacol 140(3):526–534. doi: 10.1016/j.jep.2012.01.041 CrossRefPubMedGoogle Scholar
  20. 20.
    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213. doi: 10.1093/nar/gkv951 CrossRefPubMedGoogle Scholar
  21. 21.
    Rose PW, Prlic A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell DS, Westbrook JD, Woo J, Young J, Zardecki C, Berman HM, Bourne PE, Burley SK (2015) The RCSB protein data bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43(Database issue):345–356. doi: 10.1093/nar/gku1214 CrossRefGoogle Scholar
  22. 22.
    Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234. doi: 10.1007/s10822-013-9644-8 CrossRefPubMedGoogle Scholar
  23. 23.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. doi: 10.1002/jcc.21367 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lipinski CA (2004) Lead and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341. doi: 10.1016/j.ddtec.2004.11.007 CrossRefPubMedGoogle Scholar
  25. 25.
    Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623. doi: 10.1021/jm020017n CrossRefPubMedGoogle Scholar
  26. 26.
    Valko K, Butler J, Eddershaw P (2013) Predictive approaches to increase absorption of compounds during lead optimisation. Expert Opin Drug Discov 8(10):1225–1238. doi: 10.1517/17460441.2013.815613 CrossRefPubMedGoogle Scholar
  27. 27.
    Stierand K, Rarey M (2010) Drawing the PDB: protein–ligand complexes in two dimensions. ACS Med Chem Lett 1(9):540–545. doi: 10.1021/ml100164p CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yoshikawa S, Kukimoto-Niino M, Parker L, Handa N, Terada T, Fujimoto T, Terazawa Y, Wakiyama M, Sato M, Sano S, Kobayashi T, Tanaka T, Chen L, Liu ZJ, Wang BC, Shirouzu M, Kawa S, Semba K, Yamamoto T, Yokoyama S (2013) Structural basis for the altered drug sensitivities of non-small cell lung cancer-associated mutants of human epidermal growth factor receptor. Oncogene 32(1):27–38. doi: 10.1038/onc.2012.21 CrossRefPubMedGoogle Scholar
  29. 29.
    de Ruyck J, Brysbaert G, Blossey R, Lensink MF (2016) Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 9:1–11. doi: 10.2147/AABC.S105289 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M (2004) Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J Med Chem 47(1):45–55. doi: 10.1021/jm030209y CrossRefPubMedGoogle Scholar
  31. 31.
    Wu G, Robertson DH, Brooks CL 3rd, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER-a CHARMm-based MD docking algorithm. J Comput Chem 24(13):1549–1562. doi: 10.1002/jcc.10306 CrossRefPubMedGoogle Scholar
  32. 32.
    Bajorath J (2015) Computer-aided drug discovery. F1000Res 4(F1000 Faculty Rev):630 doi: 10.12688/f1000research.6653.1 CrossRefGoogle Scholar
  33. 33.
    Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395. doi: 10.1124/pr.112.007336 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Arunkumar R, Sharmila G, Elumalai P, Senthilkumar K, Banudevi S, Gunadharini DN, Benson CS, Daisy P, Arunakaran J (2012) Effect of diallyl disulfide on insulin-like growth factor signaling molecules involved in cell survival and proliferation of human prostate cancer cells in vitro and in silico approach through docking analysis. Phytomedicine 19(10):912–923. doi: 10.1016/j.phymed.2012.04.009 CrossRefPubMedGoogle Scholar
  35. 35.
    Sumantran VN (2011) Cellular chemosensitivity assays: an overview. Methods Mol Biol 731:219–236. doi: 10.1007/978-1-61779-080-5_19 CrossRefPubMedGoogle Scholar
  36. 36.
    Garibyan L, Avashia N (2013) Research techniques made simple: polymerase chain reaction (PCR). J Invest Dermatol 133(3):e6. doi: 10.1038/jid.2013.1 CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 ∆∆CT method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefGoogle Scholar
  38. 38.
    Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85. doi: 10.1186/1471-2105-7-85 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53(14):5061–5084. doi: 10.1021/jm100112j CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Singh YP, Singh RA (2010) In silico studies of organosulfur-functional active compounds in garlic. Biofactors 36(4):297–311. doi: 10.1002/biof.102 CrossRefPubMedGoogle Scholar
  41. 41.
    Honorio KM, Moda TL, Andricopulo AD (2013) Pharmacokinetic properties and in silico ADME modeling in drug discovery. Med Chem 9(2):163–176. doi: 10.2174/1573406411309020002 CrossRefPubMedGoogle Scholar
  42. 42.
    Fridgeirsdottir GA, Harris R, Fischer PM, Roberts CJ (2016) Support tools in formulation development for poorly soluble drugs. J Pharm Sci 105(8):2260–2269. doi: 10.1016/j.xphs.2016.05.024 CrossRefPubMedGoogle Scholar
  43. 43.
    Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 6(2):147–172. doi: 10.1002/wcms.1240 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID, Glen RC, Schneider G (2015) Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov 14(6):387–404. doi: 10.1038/nrd4581 CrossRefPubMedGoogle Scholar
  45. 45.
    Olsen L, Oostenbrink C, Jorgensen FS (2015) Prediction of cytochrome P450 mediated metabolism. Adv Drug Deliv Rev 86:61–71. doi: 10.1016/j.addr.2015.04.020 CrossRefPubMedGoogle Scholar
  46. 46.
    Bohnert T, Gan LS (2013) Plasma protein binding: from discovery to development. J Pharm Sci 102(9):2953–2994. doi: 10.1002/jps.23614 CrossRefPubMedGoogle Scholar
  47. 47.
    Lambrinidis G, Vallianatou T, Tsantili-Kakoulidou A (2015) In vitro, in silico and integrated strategies for the estimation of plasma protein binding: a review. Adv Drug Deliv Rev 86:27–45. doi: 10.1016/j.addr.2015.03.011 CrossRefPubMedGoogle Scholar
  48. 48.
    Potschka H (2010) Targeting the brain-surmounting or bypassing the blood-brain barrier. Handb Exp Pharmacol 197:411–431. doi: 10.1007/978-3-642-00477-3_14 CrossRefGoogle Scholar
  49. 49.
    Passeleu-Le Bourdonnec C, Carrupt PA, Scherrmann JM, Martel S (2013) Methodologies to assess drug permeation through the blood-brain barrier for pharmaceutical research. Pharm Res 30(11):2729–2756. doi: 10.1007/s11095-013-1119-z CrossRefPubMedGoogle Scholar
  50. 50.
    Charron CS, Dawson HD, Novotny JA (2016) Garlic influences gene expression in vivo and in vitro. J Nutr 146(2):444–449. doi: 10.3945/jn.114.202481 CrossRefGoogle Scholar
  51. 51.
    Chu YL, Raghu R, Lu KH, Liu CT, Lin SH, Lai YS, Cheng WC, Lin SH, Sheen LY (2013) Autophagy therapeutic potential of garlic in human cancer therapy. J Tradit Complement Med 3(3):159–162. doi: 10.4103/2225-4110.114895 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Trio PZ, You S, He X, He J, Sakao K, Hou DX (2014) Chemopreventive functions and molecular mechanisms of garlic organosulfur compounds. Food Funct 5(5):833–844. doi: 10.1039/c3fo60479a CrossRefPubMedGoogle Scholar
  53. 53.
    Raghu R, Lu KH, Sheen LY (2012) Recent research progress on garlic as a potential anticarcinogenic agent against major digestive cancers. J Tradit Complement Med 2(3):192–201CrossRefGoogle Scholar
  54. 54.
    Roy N, Davis S, Narayanankutty A, Nazeem P, Babu T, Abida P, Valsala P, Raghavamenon AC (2016) Garlic phytocompounds possess anticancer activity by specifically targeting breast cancer biomarkers—an in silico study. Asian Pac J Cancer Prev 17(6):2883–2888PubMedGoogle Scholar
  55. 55.
    Roy N, Narayanankutty A, Nazeem PA, Valsalan R, Babu TD, Mathew D (2016) Plant phenolics ferulic acid and p-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation. Asian Pac J Cancer Prev 17(8):4019–4023PubMedGoogle Scholar
  56. 56.
    Wang K, Wang Y, Qi Q, Zhang F, Zhang Y, Zhu X, Liu G, Luan Y, Zhao Z, Cai J, Cao J, Li S (2016) Inhibitory effects of S-allylmercaptocysteine against benzo(a)pyrene-induced precancerous carcinogenesis in human lung cells. Int Immunopharmacol 34:37–43. doi: 10.1016/j.intimp.2016.02.017 CrossRefPubMedGoogle Scholar
  57. 57.
    Cerella C, Dicato M, Jacob C, Diederich M (2011) Chemical properties and mechanisms determining the anti-cancer action of garlic-derived organic sulfur compounds. Anticancer Agents Med Chem 11(3):267–271. doi: 10.2174/187152011795347522 CrossRefPubMedGoogle Scholar
  58. 58.
    Wang HC, Pao J, Lin SY, Sheen LY (2012) Molecular mechanisms of garlic-derived allyl sulfides in the inhibition of skin cancer progression. Ann N Y Acad Sci 1271:44–52. doi: 10.1111/j.1749-6632.2012.06743.x CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang H, Wang K, Lin G, Zhao Z (2014) Antitumor mechanisms of s-allyl mercaptocysteine for breast cancer therapy. BMC Complement Altern Med 14:270. doi: 10.1186/1472-6882-14-270 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chen Y, Henson ES, Xiao W, Huang D, McMillan-Ward EM, Israels SJ, Gibson SB (2016) Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy 12(6):1029–1046. doi: 10.1080/15548627.2016.1164357 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag 2017

Authors and Affiliations

  • Nabarun Roy
    • 1
    Email author
  • P. A. Nazeem
    • 1
  • T. D. Babu
    • 2
  • P. S. Abida
    • 1
  • Arunaksharan Narayanankutty
    • 2
  • Ravisankar Valsalan
    • 1
  • P. A. Valsala
    • 1
  • Achuthan C. Raghavamenon
    • 2
  1. 1.Distributed Information Centre, Centre for Plant Biotechnology and Molecular BiologyKerala Agricultural UniversityThrissurIndia
  2. 2.Department of BiochemistryAmala Cancer Research Centre (Recognized centre of University of Calicut)ThrissurIndia

Personalised recommendations