Structural Insight into the Mechanism of Dibenzo[a,l]pyrene and Benzo[a]pyrene-Mediated Cell Proliferation Using Molecular Docking Simulations

  • M. Kalim A. Khan
  • Salman Akhtar
  • Jamal M. ArifEmail author
Original Research Article


In the proposed work, we have explicated the mechanism of dibenzo[a,l]pyrene (DBP) and benzo[a]pyrene (BP) modulated cell proliferation by assessing the plausible binding with CASPASES, BAX, Bcl-2, MDM2, p53, p21, p16, CylinD1-CDK4 complex, CylinE1-CDK2 complex, H-Ras, K-Ras, BRCA1, and BRCA2 through exploiting the inherent potential of AutoDock Tools 4.0. In silico findings revealed that potent carcinogenic metabolites of DBP (e.g., (−)-anti-DBPDE and (+)-syn-DBPDE) and BP (e.g., (+)-anti-BPDE) exhibited better binding interactions to Caspase-9 than Caspase-8 and Caspase-3. Feeble interactions of BAX and Bcl-2 with diol-epoxides of both PAHs were observed. Diol-epoxides of DBP and BP were found to bind to p53 with tighter interaction than MDM2 and p53-MDM2 complex. The p16 and Cyclin-CDK complexes were best docked to aforesaid metabolites as compared to p21. Moreover, stronger interactions of BRCA1 and BRCA2 with DBP and feeble interactions of BRCA1 and BRCA2 with BP were observed from docking results. Furthermore, stronger interactions of both DBP and BP with the H-Ras and K-Ras oncoproteins were found, while only DBP interacted relatively strongly with the BRCA1 and BRCA2, which were suggesting more carcinogenic nature of DBP than BP, a well-known observation in the wet lab. Besides giving structural insight into the mechanism of DBP and BP-mediated cell proliferation, these in silico findings may be helpful to understand the mechanistic nature of environmental carcinogens and their cellular targets.


Dibenzo[a,l]pyrene Benzo[a]pyrene Bcl-2 BAX p53 MDM2 H-Ras Docking 



Authors are grateful to the Hon’ble Vice Chancellor of the Integral University for providing the infrastructural facilities to carry out this research (IU/R&D/2016-MCN0001). The partial financial assistance was granted by the Biotechnology Research Trust Fund (BRTF), Integral University, Lucknow.

Compliance with ethical standards

Conflict of interest

The authors would like to declare that there is no conflict of interest.


  1. 1.
    Korsmeyer SJ (1995) Regulators of cell death. Trends Genet 11:101–105CrossRefGoogle Scholar
  2. 2.
    Hale AJ, Smith CA, Sutherland LC, Stoneman VE, Longthorne VL, Culhane AC, Williams GT (1996) Apoptosis: molecular regulation of cell death. Eur J Biochem 236:1–26CrossRefGoogle Scholar
  3. 3.
    Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326CrossRefGoogle Scholar
  4. 4.
    Huang D, Strasser A (2000) BH3-only proteins-essential initiators of apoptotic cell death. Cell 103:839–842CrossRefGoogle Scholar
  5. 5.
    Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607CrossRefGoogle Scholar
  6. 6.
    Zha J, Harada H, Osipov K, Jockel J, Waksman G, Korsmeyer SJ (1997) BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J Biol Chem 272:24101–24104CrossRefGoogle Scholar
  7. 7.
    Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:1693s–1700sPubMedGoogle Scholar
  8. 8.
    Kroemer G (1999) Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 6:1–15CrossRefGoogle Scholar
  9. 9.
    Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17:2941–2941CrossRefGoogle Scholar
  10. 10.
    Lutz RJ (2000) Role of the BH3 (Bcl-2 homology 3) domain in the regulation of apoptosis and Bcl-2-related proteins. Biochem Soc Trans 28(2):51–56CrossRefGoogle Scholar
  11. 11.
    Cheng E, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-X-L sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711CrossRefGoogle Scholar
  12. 12.
    Ruvolo PP, Deng X, May WS (2001) Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 15:515–522CrossRefGoogle Scholar
  13. 13.
    Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290:989–992CrossRefGoogle Scholar
  14. 14.
    Schmitt CA, Lowe SW (2002) Apoptosis and chemoresistance in transgenic cancer models. J Mol Med 80:137–146CrossRefGoogle Scholar
  15. 15.
    Schott AF, Apel IJ, Nunez G, Clarke MF (1995) Bcl-XL protects cancer cells from p53-mediated apoptosis. Oncogene 11:1389–1394PubMedGoogle Scholar
  16. 16.
    Walczak H, Bouchon A, Stahl H, Krammer PH (2000) Tumor necrosis factor-related apoptosis-inducing ligand retains its apoptosis-inducing capacity on Bcl-2-or Bcl-xL-overexpressing chemotherapy-resistant tumor cells. Cancer Res 60:3051–3057PubMedGoogle Scholar
  17. 17.
    Chipuk JE, Bhat M, Hsing AY, Ma J, Danielpour D (2001) Bcl-xL blocks transforming growth factor-β1-induced apoptosis by inhibiting cytochrome c release and not by directly antagonizing Apaf-1-dependent caspase activation in prostate epithelial cells. J Biol Chem 276:26614–26621CrossRefGoogle Scholar
  18. 18.
    Hayward RL, Macpherson JS, Cummings J, Monia BP, Smyth JF, Jodrell DI (2003) Antisense Bcl-xl down-regulation switches the response to topoisomerase I inhibition from senescence to apoptosis in colorectal cancer cells, enhancing global cytotoxicity. Clin Cancer Res 9:2856–2865PubMedGoogle Scholar
  19. 19.
    Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 85:637–640CrossRefGoogle Scholar
  20. 20.
    Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058CrossRefGoogle Scholar
  21. 21.
    Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, Taya Y (2000) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102:849–862CrossRefGoogle Scholar
  22. 22.
    Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol cell 7(3):683–694CrossRefGoogle Scholar
  23. 23.
    Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol cell 11:577–590CrossRefGoogle Scholar
  24. 24.
    Robles AI, Linke SP, Harris CC (2002) The p53 network in lung carcinogenesis. Oncogene 21:6898–6907CrossRefGoogle Scholar
  25. 25.
    Soengas MS, Alarcon RM, Yoshida H, Hakem R, Mak TW, Lowe SW (1999) Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284:156–159CrossRefGoogle Scholar
  26. 26.
    Ford JM, Hanawalt PC (1995) Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc Natl Acad Sci 92:8876–8880CrossRefGoogle Scholar
  27. 27.
    Wang X, Christiani DC, Wiencke JK, Fischbein M, Xu X, Cheng TJ, Mark E, Wain JC, Kelsey KT (1995) Mutations in the p53 gene in lung cancer are associated with cigarette smoking and asbestos exposure. Cancer Epidemiol Biomark Prev 4:543–548Google Scholar
  28. 28.
    Offer H, Wolkowicz R, Matas D, Blumenstein S, Livneh Z, Rotter V (1999) Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett 450:197–204CrossRefGoogle Scholar
  29. 29.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310CrossRefGoogle Scholar
  30. 30.
    Zhou J, Ahn J, Wilson SH, Prives C (2001) A role for p53 in base excision repair. EMBO J 20:914–923CrossRefGoogle Scholar
  31. 31.
    Wang XW, Yeh H, Schaeffer L, Roy R, Moncollin V, Egly JM, Wang Z, Freidberg EC, Evans MK, Taffe BG (1995) p53 Modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet 10:188–195CrossRefGoogle Scholar
  32. 32.
    Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Jacks T (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810CrossRefGoogle Scholar
  33. 33.
    Flemington EK, Speck SH, Kaelin WG (1993) E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc Natl Acad Sci 90:6914–6918CrossRefGoogle Scholar
  34. 34.
    Helin K, Harlow E, Fattaey A (1993) Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol 13:6501–6508CrossRefGoogle Scholar
  35. 35.
    DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR (1997) Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci 94:7245–7250CrossRefGoogle Scholar
  36. 36.
    Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH (1998) p14ARF links the tumour suppressors RB and p53. Nature 395:124–125CrossRefGoogle Scholar
  37. 37.
    Nahle Z, Polakoff J, Davuluri RV, McCurrach ME, Jacobson MD, Narita M, Zhang MQ, Lazebnik Y, Bar-Sagi D, Lowe SW (2002) Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4:859–864CrossRefGoogle Scholar
  38. 38.
    Hershko T, Ginsberg D (2004) Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 279:8627–8634CrossRefGoogle Scholar
  39. 39.
    Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecule simulation program. J Comput Chem 30:1545–1614CrossRefGoogle Scholar
  40. 40.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK (1998) Automated docking using Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  41. 41.
    Laurie AT, Jackson RM (2005) Q-Site Finder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916CrossRefGoogle Scholar
  42. 42.
    Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304CrossRefGoogle Scholar
  43. 43.
    Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5CrossRefGoogle Scholar
  44. 44.
    Baig MH, Sudhakar DR, Kalaiarasan P, Subbarao N, Wadhawa G, Lohani M, Khan MKA, Khan AU (2014). Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: A Molecular Dynamics study. PLOS One 9(12):e112456. doi: 10.1371/journal.pone CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sharma N, Akhtar S, Jamal QM, Kamal MA, Khan MK, Siddiqui MH, Sayeed U (2016) Elucidation of antiangiogenic potential of Vitexin obtained from Cucumis sativus targeting Hsp90 protein: a novel multipathway targeted approach to restrain angiogenic phenomena. Med Chem 13. doi: 10.2174/1573406413666161111152720 CrossRefGoogle Scholar
  46. 46.
    Akhtar S, Khan MK, Arif JM (2016) Evaluation and elucidation studies of natural aglycones for anticancer potential using apoptosis-related markers: an in silico study. Interdiscip Sci. doi: 10.1007/s12539-016-0191-6 CrossRefPubMedGoogle Scholar
  47. 47.
    Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein ligand interactions. Protein Eng 8:127–134CrossRefGoogle Scholar
  48. 48.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  49. 49.
    Khan MKA, Siddiqui MH, Akhtar S, Ahmad K, Baig MH, Osama K (2015) Screening of plant-derived natural compounds as potent chemotherapeutic agents against breast cancer: an in silico approach. J Chem Pharm Res 7(1):519–526Google Scholar
  50. 50.
    Al-Khodairy FM., Khan MKA, Kunhi M, Pulicat MS, Arif JM (2013) Erysolin induces apoptosis in human breast cancer cell lines: Evidences from in vitro and in silico studies. Am J Bioinform Res 3(3):62–71Google Scholar
  51. 51.
    Khan MKA, Ansari IA, Khan MS (2013) Dietary phytochemicals as potent chemotherapeutic agents against breast cancer: inhibition of NF-κB Pathway via Molecular Interactions in Rel Homology Domain of its Precursor Protein p105. Pharmacogn Mag 9:51–57CrossRefGoogle Scholar
  52. 52.
    Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, Daniel PT, Orfanos CE, Geilen CC (2001) The BAX/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol 117:333–340CrossRefGoogle Scholar
  53. 53.
    Schelwies K, Sturm I, Grabowski P, Scherubl H, Schindler I, Hermann S Stein H, Huhr HJ, Riecken EO, Zeitz M, Dorken B, Daniel PT (2002) Analysis of P53/BAX in primary colorectal carcinoma: low BAX protein expression is a negative prognostic factor in UICC stage III tumors. Int J Cancer 99:589–596CrossRefGoogle Scholar
  54. 54.
    Salakou S, Kardamakis D, Tsamandas AC, Zolota V, Apostolakis E, Tzelepi V, Papathanasopoulos P, Bonikos DS, Papapetropoulos T, Petsas T, Dougenis D (2007) Increased BAX/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo 21:123–132PubMedGoogle Scholar
  55. 55.
    Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D (1994) Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 54:3391–3395PubMedGoogle Scholar
  56. 56.
    el-Deiry WS, Harper JW, O’Connor PM (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174PubMedGoogle Scholar
  57. 57.
    Vahakangas KH, Bennett WP, Castren K, Welsh JA, Khan MA, Blomeke B, Alavanja MCR, Harris CC (2001) p53 and K-ras mutations in lung cancers from former and never-smoking women. Cancer Res 61:4350–4356PubMedGoogle Scholar
  58. 58.
    Li D, Firozi PF, Zhang W, Shen J, DiGiovanni J, Lau S, Abbruzzese JL (2002) DNA adducts, genetic polymorphisms, and K-ras mutation in human pancreatic cancer. Mutat Res 513:37–48CrossRefGoogle Scholar
  59. 59.
    Chen KM, Zhang SM, Aliaga C, Sun YW, Cooper T, Gowdahalli K, Zhu J, Amin S, El-Bayoumy K (2012) Induction of ovarian cancer and DNA adducts by Dibenzo[a,l]pyrene in the mouse. Chem Res Toxicol 25:374–380CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2017

Authors and Affiliations

  • M. Kalim A. Khan
    • 1
  • Salman Akhtar
    • 1
  • Jamal M. Arif
    • 2
    Email author
  1. 1.Department of Bioengineering, Faculty of EngineeringIntegral UniversityLucknowIndia
  2. 2.Department of Biosciences, Faculty of Applied SciencesIntegral UniversityLucknowIndia

Personalised recommendations