Evolving-Pattern Analysis of Transient and Long-Term Biomarkers for Cancers: Hepatocellular Carcinoma as a Case

  • Yingying Wang
  • Yunpeng CaiEmail author
  • Yingbo Miao
Original Research Article


Cancer is a complex disease arises from combinations of changes that occur over a period of time. With the development of bioinformatics, more and more biomarkers representing changes in cancers had been identified using gene expression profiles. However, biomarkers alone are quite limited in explaining the molecular processes occurred in the due process. In this paper, we develop an evolving-pattern analysis pipeline for in-depth studies of gene expression changes during different disease stages, choosing hepatocellular carcinoma (HCC) as a case. Enrichment analyses were performed on three levels: functional terms, validated genes, and regulation factors for all the biomarkers to find out their biological characters. Our results show that biomarkers with distinct evolving patterns exhibit quite different characteristics on functional and regulation levels. For the case of HCC, transient biomarkers are mostly annotated to metabolic processes, while long-term biomarkers are mostly annotated to regulation processes, with a larger number of enriched regulation factors. Furthermore, our pipeline reveals the important roles of microRNAs in various evolving patterns, which are known to be closely related to HCC. These results confirm that evolving-pattern analysis may provide a new sight for in-depth studies of biomarkers and diseases.


Transient biomarker Long-term biomarker Functional term HCC Cirrhosis microRNA 



This work was supported by National Natural Science Foundation of China (Grant No. 31200995), and the development funds for Key Laboratory in Shenzhen (Grant No. ZDSY20120617113021359) and the Shenzhen Innovation Fund for Advanced Talents (Grant No. KQCX20130628112914291).

Compliance with Ethical Standards

Conflict of interest

No financial competing interests.


  1. 1.
    Cui X, Hwang JT et al (2005) Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6(1):59–75CrossRefGoogle Scholar
  2. 2.
    Welsh JB, Sapinoso LM et al (2001) Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61(16):5974–5978PubMedGoogle Scholar
  3. 3.
    Shipp MA, Ross KN et al (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8(1):68–74CrossRefGoogle Scholar
  4. 4.
    Yunpeng C, YS, Yubo C, Jian L, Steve G (2010) Fast implementation of l1 regularized learning algorithms using gradient descent methods. In: The proceedings of the 10th SIAM international conference on data mining (SDM10), Columbus, Ohio, USAGoogle Scholar
  5. 5.
    Franchis R, Meucci G et al (1993) The natural history of asymptomatic hepatitis B surface antigen carriers. Ann Intern Med 118(3):191–194CrossRefGoogle Scholar
  6. 6.
    Fattovich Brollo GL et al (1991) Natural history and prognostic factors for chronic hepatitis type B. Gut 32(3):294–298CrossRefGoogle Scholar
  7. 7.
    Sanchez-Tapias JM, Costa J et al (2002) Influence of hepatitis B virus genotype on the long-term outcome of chronic hepatitis B in western patients. Gastroenterology 123(6):1848–1856CrossRefGoogle Scholar
  8. 8.
    Sherman M (2005) Hepatocellular carcinoma: epidemiology, risk factors, and screening. Semin Liver Dis 25(2):143–154CrossRefGoogle Scholar
  9. 9.
    Velazquez RF, Rodriguez M et al (2003) Prospective analysis of risk factors for hepatocellular carcinoma in patients with liver cirrhosis. Hepatology 37(3):520–527CrossRefGoogle Scholar
  10. 10.
    Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48(4):1312–1327CrossRefGoogle Scholar
  11. 11.
    Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31(4):339–346CrossRefGoogle Scholar
  12. 12.
    Lamb JR, Zhang C et al (2011) Predictive genes in adjacent normal tissue are preferentially altered by sCNV during tumorigenesis in liver cancer and may rate limiting. PLoS One 6(7):e20090CrossRefGoogle Scholar
  13. 13.
    Sung WK, Zheng H et al (2012) Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 44(7):765–769CrossRefGoogle Scholar
  14. 14.
    Tung EK, Mak CK et al (2011) Clinicopathological and prognostic significance of serum and tissue Dickkopf-1 levels in human hepatocellular carcinoma. Liver Int 31(10):1494–1504CrossRefGoogle Scholar
  15. 15.
    Ashburner M, Ball CA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29CrossRefGoogle Scholar
  16. 16.
    Subramanian A, Tamayo P et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550CrossRefGoogle Scholar
  17. 17.
    Becker KG, Barnes KC et al (2004) The genetic association database. Nat Genet 36(5):431–432CrossRefGoogle Scholar
  18. 18.
    Matys V, Fricke E et al (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374–378CrossRefGoogle Scholar
  19. 19.
    Maragkakis M, Alexiou P et al (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinf 10:295CrossRefGoogle Scholar
  20. 20.
    Maragkakis M, Reczko M et al (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37(Web Server issue):W273–276CrossRefGoogle Scholar
  21. 21.
    Betel D, Koppal A et al (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90CrossRefGoogle Scholar
  22. 22.
    Krek A, Grun D et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500CrossRefGoogle Scholar
  23. 23.
    Miranda KC, Huynh T et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217CrossRefGoogle Scholar
  24. 24.
    Rehmsmeier M, Steffen P et al (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517CrossRefGoogle Scholar
  25. 25.
    Lewis BP, Burge CB et al (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20CrossRefGoogle Scholar
  26. 26.
    Lewis BP, Shih IH et al (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798CrossRefGoogle Scholar
  27. 27.
    Kertesz M, Iovino N et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284CrossRefGoogle Scholar
  28. 28.
    Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14(6):1012–1017CrossRefGoogle Scholar
  29. 29.
    Wang X, Naqa IME (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24(3):325–332CrossRefGoogle Scholar
  30. 30.
    Bandyopadhyay S, Mitra R (2009) TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 25(20):2625–2631CrossRefGoogle Scholar
  31. 31.
    John B, Enright AJ et al (2004) Human MicroRNA targets. PLoS Biol 2(11):e363CrossRefGoogle Scholar
  32. 32.
    Trevisani F, Cantarini MC et al (2008) Recent advances in the natural history of hepatocellular carcinoma. Carcinogenesis 29(7):1299–1305CrossRefGoogle Scholar
  33. 33.
    Liu AM, Yao TJ et al (2012) Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open 2(2):e000825CrossRefGoogle Scholar
  34. 34.
    Dang CV (2012) Links between metabolism and cancer. Genes Dev 26(9):877–890CrossRefGoogle Scholar
  35. 35.
    Connolly E, Melegari M et al (2008) Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol 173(3):856–864CrossRefGoogle Scholar
  36. 36.
    Kutay H, Bai S et al (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99(3):671–678CrossRefGoogle Scholar
  37. 37.
    Murakami Y, Yasuda T et al (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25(17):2537–2545CrossRefGoogle Scholar
  38. 38.
    Wang Y, Lee AT et al (2008) Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem 283(19):13205–13215CrossRefGoogle Scholar
  39. 39.
    Huang XH, Wang Q et al (2009) Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma: miR-338 is downregulated. Hepatol Res 39(8):786–794CrossRefGoogle Scholar
  40. 40.
    Childs G, Fazzari M et al (2009) Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol 174(3):736–745CrossRefGoogle Scholar
  41. 41.
    Gramantieri L, Ferracin M et al (2007) Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67(13):6092–6099CrossRefGoogle Scholar
  42. 42.
    Chen X, Cheung ST et al (2002) Gene expression patterns in human liver cancers. Mol Biol Cell 13(6):1929–1939CrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.College of PharmacyNankai UniversityTianjinChina

Personalised recommendations