Flavonoids as Multi-target Inhibitors for Proteins Associated with Ebola Virus: In Silico Discovery Using Virtual Screening and Molecular Docking Studies

  • Utkarsh RajEmail author
  • Pritish Kumar Varadwaj
Original Research Article


Ebola virus is a single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever in humans and non-human primates. This virus is unreceptive to a large portion of the known antiviral drugs, and there is no valid treatment as on date for disease created by this pathogen. Looking into its ability to create a pandemic scenario across globe, there is an utmost need for new drugs and therapy to combat this life-threatening infection. The current study deals with the evaluation of the inhibitory activity of flavonoids against the four selected Ebola virus receptor proteins, using in silico studies. The viral proteins VP40, VP35, VP30 and VP24 were docked with small molecules obtained from flavonoid class and its derivatives and evaluated on the basis of energetics, stereochemical considerations and pharmacokinetic properties to identify potential lead compounds. The results showed that both top-ranking screened flavonoids, i.e., Gossypetin and Taxifolin, showed better docking scores and binding energies in all the EBOV receptors when compared to those of the reported compound. All the screened flavonoids have known antiviral activity, acceptable pharmacokinetic properties and are being used on human and thus can be taken as anti-Ebola therapy without the time lag for clinical trial.


Ebola virus Docking Virtual screening Flavonoids Pharmacokinetic Gossypetin Taxifolin 


Compliance with Ethical Standards

Conflict of interest

We declare that we have no conflict of interest.


  1. 1.
    Adrian M et al (2003) A current review of Ebola virus: pathogenesis, clinical presentation, and diagnostic assessment. Biol Res Nurs 4:268CrossRefGoogle Scholar
  2. 2.
    Towner JS et al (2008) Newly discovered ebola virus associated with haemorrhagic fever outbreak in Uganda. PLoS Pathog 4:e1000212CrossRefGoogle Scholar
  3. 3.
    Dixon MP, Pau RN, Howlett GJ, Dunstan DE, Sawyer WH, Davidson BE (2002) Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association. J Biol Chem 277:23186–23192CrossRefGoogle Scholar
  4. 4.
    International Commission (1978) Ebola haemorrhagic fever in Zaire, 1976. Bull World Health Organ 56(2):271–293Google Scholar
  5. 5.
    Hartlieb B, Modrof J, Mühlberger E, Klenk HD, Becker S (2003) Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association. J BiolChem 278:41830–41836Google Scholar
  6. 6.
    Heinz F, Geisbert TW (2011) Ebola hemorrhagic fever. Lancet 377:849–862CrossRefGoogle Scholar
  7. 7.
    Hoenen T, Groseth A, Kolesnikova L, Theriault S, Ebihara H, Hartlieb B, Bamberg S, Feldmann H, Stroher U, Becker S (2011) Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association. J Virol 80:7260–7264CrossRefGoogle Scholar
  8. 8.
    Saphire EO, Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454:177–182CrossRefGoogle Scholar
  9. 9.
    Weik M, Modrof J, Klenk HD, Becker S, Muhlberger E (2002) Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleo capsid association. J Virol 76:8532–8539CrossRefGoogle Scholar
  10. 10.
    Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, Le Mercier P (2011) ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res 39:576–582CrossRefGoogle Scholar
  11. 11.
    Nanbo A, Watanabe S, Halfmann P, Kawaoka Y (2013) The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells. Nature 10:1038Google Scholar
  12. 12.
    Geisbert TW et al (1995) Differentiation of filoviruses by electron microscopy. Virus Res 39:129CrossRefGoogle Scholar
  13. 13.
    Gomis Rüth FX (2003) The matrix protein VP40 from Ebola virus octamerizes into pore-like structures with specific RNA binding properties. Structure 11:423CrossRefGoogle Scholar
  14. 14.
    Ruigrok RW et al (2000) Structural characterization and membrane binding properties of the matrix protein VP40 of Ebola virus. J Mol Biol 300:103CrossRefGoogle Scholar
  15. 15.
    Volchkov Victor E et al (2011) Conserved proline-rich region of Ebola virus matrix protein VP40 is essential for plasma membrane targeting and virus-like particle release. J Infect Dis 204(suppl 3):884–891Google Scholar
  16. 16.
    Basler CF, Mikulasova A, Martinez-Sobrido L, Paragas J, Mühlberger E, Bray M, Klenk HD, Palese P, García-Sastre A (2003) The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol 77:7945–7956CrossRefGoogle Scholar
  17. 17.
    Jin H, Yan Z, Prabhakar BS, Feng Z, Ma Y, Verpooten D, Ganesh B, He B (2010) VP35 protein of Ebola virus impairs dendritic cell maturation induced by virus and lipopolysaccharide. J Gen Virol 91:352–361CrossRefGoogle Scholar
  18. 18.
    Ebihara H, Takada A, Kobasa D et al (2006) Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2:e73CrossRefGoogle Scholar
  19. 19.
    Watanabe S, Noda T, Halfmann P, Jasenosky L, Kawaoka Y (2007) Ebola virus (EBOV) VP24 inhibits transcription and replication of the EBOV genome. J Infect Dis 196CrossRefGoogle Scholar
  20. 20.
    Hoenen T, Jung S, Herwig A, Groseth A, Becker S (2010) Both matrix proteins of Ebola virus contribute to the regulation of viral genome replication and transcription. Virology 403:56–66CrossRefGoogle Scholar
  21. 21.
    Huang Y, Xu L, Sun Y, Nabel GJ (2002) The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 10:307–316CrossRefGoogle Scholar
  22. 22.
    Noda T, Ebihara H, Muramoto Y et al (2006) Assembly and budding of Ebola virus. PLoS Pathog 2:e99CrossRefGoogle Scholar
  23. 23.
    Mühlberger E, Weik M, Volchkov VE, Klenk H-D, Becker S (1999) Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73:2333–2342PubMedPubMedCentralGoogle Scholar
  24. 24.
    Rajamani R, Good AC (2007) Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development. Curr Opin Drug Discov Dev 10:308–315Google Scholar
  25. 25.
    Zeitlin L et al (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53CrossRefGoogle Scholar
  26. 26.
    Bavari S et al (2014) Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 508:402–405CrossRefGoogle Scholar
  27. 27.
    Cushnie TP, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38(2):99–107CrossRefGoogle Scholar
  28. 28.
    González R, Ballester I et al (2011) Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 51(4):331–362CrossRefGoogle Scholar
  29. 29.
    Nishiumi S, Miyamoto S et al (2011) Dietary flavonoids as cancer-preventive and therapeutic bio factors. Front Biosci (Sch Ed) 3:1332–1362CrossRefGoogle Scholar
  30. 30.
    Berman HM et al (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899CrossRefGoogle Scholar
  31. 31.
    Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234CrossRefGoogle Scholar
  32. 32.
    Halgren T (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389CrossRefGoogle Scholar
  33. 33.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759CrossRefGoogle Scholar
  34. 34.
    Shaw DE, Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO (2010) Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins: Struct Funct Bioinform 78(8):1950–1958Google Scholar
  35. 35.
    Mounnissamy VM, Kavimani S, Gunasegaran R (2002) Antibacterial activity of gossypetin isolated from hibiscus sabdariffa. Antiseptic 99(3):81–82Google Scholar
  36. 36.
    Todorov D, Hinkov A, Shishkova K, Shishkov S (2014) Antiviral potential of Bulgarian medicinal plants. Phytochem Rev 014-9357-1Google Scholar
  37. 37.
    Willför S, Ali M, Karonen M, Reunanen M, Arfan M, Harlamow R (2009) Extractives in bark of different conifer species growing in Pakistan. Holzforschung 63(5):551–558CrossRefGoogle Scholar
  38. 38.
    Shi Q, Li C, Huo C, Zhang M (2007) Chemistry of Chinese yew, Taxus chinensis var. mairei. Biochem Syst Ecol 36(4):266–282Google Scholar
  39. 39.
    Kaul TN, Middleton E, Ogra PL (1985) Anti-viral effect of flavonoids on human viruses. J Med Virol 15(1):71–79CrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Bioinformatics DivisionIndian Institute of Information TechnologyAllahabadIndia

Personalised recommendations