Advertisement

Implying Analytic Measures for Unravelling Rheumatoid Arthritis Significant Proteins Through Drug–Target Interaction

  • Sachidanand SinghEmail author
  • J. Jannet Vennila
  • V. P. Snijesh
  • Gincy George
  • Chinnu Sunny
Original Research Article

Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune and inflammatory disease that mainly alters the synovial joints and ultimately leads to their destruction. The involvement of the immune system and its related cells is a basic trademark of autoimmune-associated diseases. The present work focuses on network analysis and its functional characterization to predict novel targets for RA. The interactive model called as rheumatoid arthritis drug–target–protein (RA-DTP) is built of 1727 nodes and 7954 edges followed the power-law distribution. RA-DTP comprised of 20 islands, 55 modules and 123 submodules. Good interactome coverage of target–protein was detected in island 2 (Q-Score 0.875) which includes 673 molecules with 20 modules and 68 submodules. The biological landscape of these modules was examined based on the participation molecules in specific cellular localization, molecular function and biological pathway with favourable p value. Functional characterization and pathway analysis through KEGG, Biocarta and Reactome also showed their involvement in relation to the immune system and inflammatory processes and biological processes such as cell signalling and communication, glucosamine metabolic process, renin–angiotensin system, BCR signals, galactose metabolism, MAPK signalling, complement and coagulation system and NGF signalling pathways. Traffic values and centrality parameters were applied as the selection criteria for identifying potential targets from the important hubs which resulted into FOS, KNG1, PTGDS, HSP90AA1, REN, POMC, FCER1G, IL6, ICAM1, SGK1, NOS3 and PLA2G4A. This approach provides an insight into experimental validation of these associations of potential targets for clinical value to find their effect on animal studies.

Keywords

Rheumatoid arthritis Network analysis Centrality parameters Traffic value 

Notes

Acknowledgments

This research work was supported and funded by Science and Engineering Research Board—Department of Science and Technology (SERB-DST) and Karunya University

Supplementary material

12539_2015_108_MOESM1_ESM.xlsx (43 kb)
Supplementary material 1 (xlsx 42 KB)
12539_2015_108_MOESM2_ESM.xlsx (15 kb)
Supplementary material 2 (xlsx 14 KB)
12539_2015_108_MOESM3_ESM.xlsx (101 kb)
Supplementary material 3 (xlsx 101 KB)

References

  1. 1.
    McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219CrossRefGoogle Scholar
  2. 2.
    Singh S, Vennila JJ (2014) Gene expression profiling for identifying key role of synovial macrophages in rheumatoid arthritis. Int J Comput Bioinfo In Silico Model 3:332–336Google Scholar
  3. 3.
    Manju S, Chandankhede, Madhur M, Gupta (2013) Oxidative stress and antioxidant status in patients with rheumatoid arthritis. Int J Biol Med Res 4:3088–3090Google Scholar
  4. 4.
    Arrell DK, Terzic A (2010) Network systems biology for drug discovery. Clin Pharmacol Ther 88:120–125CrossRefGoogle Scholar
  5. 5.
    Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690. doi: 10.1038/nchembio.118 CrossRefGoogle Scholar
  6. 6.
    Salwinski L, Licata L, Winter A, Thorneycroft D, Khadake J, Ceol A, Aryamontri AC, Oughtred R, Livstone M, Boucher L, Botstein D, Dolinski K, Berardini T, Huala E, Tyers M, Eisenberg D, Cesareni G, Hermjakob H (2009) Recurated protein interaction datasets. Nat Methods 6:860–861. doi: 10.1038/nmeth1209-860 CrossRefGoogle Scholar
  7. 7.
    Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila CI, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382CrossRefGoogle Scholar
  8. 8.
    Lima MG, Van HJ (2009) The powerful law of the power law and other myths in network biology. Mol Biosyst 5:1482–1493CrossRefGoogle Scholar
  9. 9.
    Diestel R (2005) Graph theory, ser. Graduate texts in mathematics, 173rd edn. Springer, HeidelbergGoogle Scholar
  10. 10.
    Azuaje FJ, Zhang L, Devaux Y, Wagner DR (2011) Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci Rep 1. doi: 10.1038/srep00052
  11. 11.
    Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913. doi: 10.1126/science.1065103 CrossRefGoogle Scholar
  12. 12.
    Snijesh VP, Singh S (2014) Molecular modeling and network based approach in explaining the medicinal properties of nyctanthes arbortristis, lippia nodiflora for rheumatoid arthritis. J Bioinf Intell Control 3:31–38. doi: 10.1166/jbic.2014.1072 CrossRefGoogle Scholar
  13. 13.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:440–442. doi: 10.1038/30918 CrossRefGoogle Scholar
  14. 14.
    Al-Shahrour F, Díaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20:578–580CrossRefGoogle Scholar
  15. 15.
    Goncalves JP, Graos M, Valente AX (2009) Polar mapper: a computational tool for integrated visualization of protein interaction networks and mRNA expression data. J R Soc Interface 6:881–896. doi: 10.1098/rsif.2008.0407 CrossRefGoogle Scholar
  16. 16.
    Valente AX, Cusick ME (2006) Yeast protein interactome topology provides framework for coordinated-functionality. Nucleic Acids Res 34:2812–2819CrossRefGoogle Scholar
  17. 17.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:47–51CrossRefGoogle Scholar
  18. 18.
    Rajendran L, Knölker HJ, Simons K (2010) Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9:29–42. doi: 10.1038/nrd2897 CrossRefGoogle Scholar
  19. 19.
    Crofford LJ, Wilder RL, Ristimäki AP, Sano H, Remmers EF, Epps HR, Hla T (1994) Cyclooxygenase-1 and-2 expression in rheumatoid synovial tissues. Effects of interleukin-1 beta, phorbol ester, and corticosteroids. J Clin Invest 93:1095–1101. doi: 10.1172/JCI117060 CrossRefGoogle Scholar
  20. 20.
    Klareskog L, McDevitt H (1999) Rheumatoid arthritis and its animal models: the role of TNF-\(\alpha\) and the possible absence of specific immune reactions. Curr Opin Immunol 11:657–662CrossRefGoogle Scholar
  21. 21.
    Ultaigh SN, Saber TP, McCormick J, Connolly M, Dellacasagrande J, Keogh B, Veale DJ (2011) Blockade of Toll-like receptor 2 prevents spontaneous cytokine release from rheumatoid arthritis ex vivo synovial explant cultures. Arthritis Res Ther 13:33–33CrossRefGoogle Scholar
  22. 22.
    Paravicini TM, Yogi A, Mazur A, Touyz RM (2009) Dysregulation of vascular TRPM7 and annexin-1 is associated with endothelial dysfunction in inherited hypomagnesemia. Hypertension 53:423–429CrossRefGoogle Scholar
  23. 23.
    Adam O, Beringer C, Kless T, Lemmen C, Adam A, Wiseman M, Forth W (2003) Anti-inflammatory effects of a low arachidonic acid diet and fish oil in patients with rheumatoid arthritis. Rheumatol Int 23:27–36CrossRefGoogle Scholar
  24. 24.
    Inoue H, Takamori M, Nagata N, Nishikawa T, Oda H, Yamamoto S, Koshihara Y (2001) An investigation of cell proliferation and soluble mediators induced by interleukin 1\(\beta\) in human synovial fibroblasts: comparative response in osteoarthritis and rheumatoid arthritis. Inflamm Res 50:65–72CrossRefGoogle Scholar
  25. 25.
    Germain P, Staels B, Dacquet C, Spedding M, Laudet V (2006) Overview of nomenclature of nuclear receptors. Pharmacol Rev 58:685–704. doi: 10.1124/pr.58.4.2 CrossRefGoogle Scholar
  26. 26.
    Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858. doi: 10.1038/nature07730 CrossRefGoogle Scholar
  27. 27.
    Zoll J, Monassier L, Garnier A, N’Guessan B, Mettauer B, Veksler V, Piquard F, Ventura-Clapier R, Geny B (2006) ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction. Appl Physiol 101:385–391. doi: 10.1152/japplphysiol.01486.2005 CrossRefGoogle Scholar
  28. 28.
    Anzenbacher P, Anzenbacherova E (2001) Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 58:737–747CrossRefGoogle Scholar
  29. 29.
    Halazonetis TD, Georgopoulos K, Greenberg ME, Leder P (1988) c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55:917–924CrossRefGoogle Scholar
  30. 30.
    Johnston SR, Lu B, Scott GK, Kushner PJ, Smith IE, Dowsett M, Benz CC (1999) Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance. Clin Cancer Res 5:251–256PubMedGoogle Scholar
  31. 31.
    Liedtke W (2008) Molecular mechanisms of TRPV4-mediated neural signaling. Ann N Y Acad Sci 1144:42–52CrossRefGoogle Scholar
  32. 32.
    Okuse K (2007) Pain signalling pathways: from cytokines to ion channels. Int J Biochem Cell Biol 39:490–496CrossRefGoogle Scholar
  33. 33.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952. doi: 10.1172/JCI119259 CrossRefGoogle Scholar
  34. 34.
    Kavelaars A, Ballieux RE, Heijnen CJ (1989) The role of IL-1 in the corticotropin-releasing factor and arginine-vasopressin-induced secretion of immunoreactive \(\beta\)-endorphin by human peripheral blood mononuclear cells. J Immunol 142:2338–2342PubMedGoogle Scholar
  35. 35.
    Kavelaars A, Berkenbosch F, Croiset G, Ballieux RE, Heijnen CJ (1990) Induction of \(\beta\)-endorphin secretion by lymphocytes after subcutaneous administration of corticotropin-releasing factor. Endocrinology 126:759–764CrossRefGoogle Scholar
  36. 36.
    Smith EM, Morrill AC, Meyer WJ, Blalock JE (1986) Corticotropin releasing factor induction of leukocyte-derived immunoreactive ACTH and endorphins. Nature 321:881–882CrossRefGoogle Scholar
  37. 37.
    Wen JJ, Zago MP, Nunez S, Gupta S, Burgos FN, Garg NJ (2012) Serum proteomic signature of human chagasic patients for the identification of novel potential protein biomarkers of disease. Mol Cell Proteomics 11:435–452CrossRefGoogle Scholar
  38. 38.
    Mosén H, Salehi A, Henningsson R, Lundquist I (2006) Nitric oxide inhibits, and carbon monoxide activates, islet acid \(\alpha\)-glucoside hydrolase activities in parallel with glucose-stimulated insulin secretion. J Endocrinol 190:681–693CrossRefGoogle Scholar
  39. 39.
    Uehara T, Park JT (2004) The N-acetyl-D-glucosamine kinase of Escherichia coli and its role in murein recycling. J Bacteriol 186:7273–7279. doi: 10.1128/JB.186.21.7273-7279.2004 CrossRefGoogle Scholar
  40. 40.
    Murrell MP, Yarema KJ, Levchenko A (2004) The systems biology of glycosylation. Chem Bio Chem 5:1334–1347CrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sachidanand Singh
    • 1
    • 2
    Email author
  • J. Jannet Vennila
    • 1
    • 2
  • V. P. Snijesh
    • 1
    • 2
  • Gincy George
    • 1
    • 2
  • Chinnu Sunny
    • 1
    • 2
  1. 1.Department of Bioinformatics, School of Biotechnology and Health SciencesKarunya UniversityCoimbatoreIndia
  2. 2.Department of Biotechnology, School of Biotechnology and Health SciencesKarunya UniversityCoimbatoreIndia

Personalised recommendations