Advertisement

OAR Lib: an open source arc routing library

  • Oliver LumEmail author
  • Bruce Golden
  • Edward Wasil
Full Length Paper
  • 22 Downloads

Abstract

We present an open source, arc routing Java library that has a flexible graph architecture with solvers for several uncapacitated arc routing problems and the ability to dynamically generate and visualize real-world street networks. The library is hosted at https://github.com/Olibear/ArcRoutingLibrary ( https://doi.org/10.5281/zenodo.2561406). We describe the algorithms in the library, report computational performance, and discuss implementation issues.

Mathematics Subject Classification

90B06 90B10 90C27 90C59 

Notes

References

  1. 1.
    Arc Routing Problems: Data Instances. http://www.uv.es/corberan/instancias.htm
  2. 2.
    Ahr, D., Reinelt, G.: New heuristics and lower bounds for the min-max k-Chinese postman problem. Algorithms-ESA 2002, pp. 64–74. Springer, Berlin (2002)Google Scholar
  3. 3.
    Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 361–362 (2009)Google Scholar
  4. 4.
    Benavent, E., Corberán, A., Piñana, E., Plana, I., Sanchis, J.M.: New heuristic algorithms for the windy rural postman problem. Comput. Oper. Res. 32(12), 3111–3128 (2005)zbMATHGoogle Scholar
  5. 5.
    Campos, V., Savall, J.V.: A computational study of several heuristics for the DRPP. Comput. Optim. Appl. 4(1), 67–77 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Corberán, A., Golden, B., Lum, O., Plana, I., Sanchis, J.: Aesthetic considerations for the min-max k windy rural postman problem. Networks 70(3), 216–232 (2017)MathSciNetGoogle Scholar
  7. 7.
    Derigs, U.: Optimization and Operations Research. Eolss Publishers Company Limited, New York (2009)Google Scholar
  8. 8.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dussault, B., Golden, B., Groër, C., Wasil, E.: Plowing with precedence: a variant of the windy postman problem. Comput. Oper. Res. 40(4), 1047–1059 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5(1), 88–124 (1973)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part I: the Chinese postman problem. Oper. Res. 43(2), 231–242 (1995)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part II: the rural postman problem. Oper. Res. 43(3), 399–414 (1995)zbMATHGoogle Scholar
  13. 13.
    Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)Google Scholar
  14. 14.
    Frederickson, G.N.: Approximation algorithms for some postman problems. J. ACM 26(3), 538–554 (1979)MathSciNetzbMATHGoogle Scholar
  15. 15.
  16. 16.
    Groër, C., Golden, B., Wasil, E.: A library of local search heuristics for the vehicle routing problem. Math. Program. Comput. 2(2), 79–101 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Grötschel, M., Win, Z.: A cutting plane algorithm for the windy postman problem. Math. Program. 55(1–3), 339–358 (1992)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Haklay, M., Weber, P.: Openstreetmap: user-generated street maps. IEEE Pervasive Comput. 7(4), 12–18 (2008)Google Scholar
  19. 19.
    Hierholzer, C., Wiener, C.: Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Math. Ann. 6(1), 30–32 (1873)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kolmogorov, V., Blossom, V.: A new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1(1), 43–67 (2009)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lau, H.T.: A Java Library of Graph Algorithms and Optimization. CRC Press, London (2010)Google Scholar
  23. 23.
    Letchford, A.N., Reinelt, G., Theis, D.O.: A faster exact separation algorithm for blossom inequalities. In: Integer Programming and Combinatorial Optimization, pp. 196–205. Springer, Berlin (2004)Google Scholar
  24. 24.
    Lum, O., Cerrone, C., Golden, B., Wasil, E.: Partitioning a street network into compact, balanced, and visually appealing routes. Networks 69(3), 290–303 (2016)MathSciNetGoogle Scholar
  25. 25.
    Lum, O., Zhang, R., Golden, B., Wasil, E.: A hybrid heuristic for the windy rural postman problem with time-dependent zigzag options. Comput. Oper. Res. 88, 247–257 (2017)MathSciNetzbMATHGoogle Scholar
  26. 26.
  27. 27.
    Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7(1), 67–80 (1982)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)Google Scholar
  29. 29.
    Tahchiev, P., Leme, F., Massol, V., Gregory, G.: JUnit in Action. Manning Publications Co, New York (2010)Google Scholar
  30. 30.
    Thimbleby, H.: The directed Chinese postman problem. Softw. Pract. Exp. 33(11), 1081–1096 (2003)Google Scholar
  31. 31.
    Win, Z.: On the windy postman problem on Eulerian graphs. Math. Program. 44(1–3), 97–112 (1989)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Yaoyuenyong, K., Charnsethikul, P., Chankong, V.: A heuristic algorithm for the mixed Chinese postman problem. Optim. Eng. 3(2), 157–187 (2002)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Scientific ComputationUniversity of MarylandCollege ParkUSA
  2. 2.Robert H. Smith School of BusinessUniversity of MarylandCollege ParkUSA
  3. 3.Kogod School of BusinessAmerican UniversityWashingtonUSA

Personalised recommendations