A novel adaptive output feedback control for DC–DC boost converter using immersion and invariance observer

  • Milad Malekzadeh
  • Alireza KhosraviEmail author
  • Mehdi Tavan
Original Paper


This paper presents a class of novel adaptive output feedback controller for DC–DC boost converter with global exponential stability. In addition, the control input constraint is considered in stability analysis. The proposed adaptive control scheme is constructed to estimate input voltage and inductor current using output voltage and control signal information. In order to estimate unavailable state and parameter, immersion and invariance technique is employed. The effectiveness of the proposed method is investigated via experimental test and the practical results endorse the efficiency of this adaptive controller.


DC–DC boost converter Immersion and invariance Estimator design Exponential stability Adaptive control 



  1. Angelov P, Ramezani R, Zhou X, 2008 Autonomous novelty detection and object tracking in video streams using evolving clustering and Takagi-Sugeno type neuro-fuzzy system. In: Neural networks, 2008. IJCNN 2008.(IEEE world congress on computational intelligence). IEEE international joint conference on (pp. 1456–1463). IEEEGoogle Scholar
  2. Angelov P, Škrjanc I, Blažič S, 2013, April. Robust evolving cloud-based controller for a hydraulic plant. In: Evolving and adaptive intelligent systems (EAIS), 2013 IEEE conference on (pp. 1–8). IEEEGoogle Scholar
  3. Boyce WE, DiPrima RC, Haines CW (1969) Elementary differential equations and boundary value problems, vol 9. Wiley, New YorkzbMATHGoogle Scholar
  4. Chen HC, Lin WJ (2014) MPPT and voltage balancing control with sensing only inductor current for photovoltaic-fed, three-level, boost-type converters. IEEE Trans Power Electron 29(1):29–35CrossRefGoogle Scholar
  5. Cho H, Yoo SJ, Kwak S (2015) State observer based sensor less control using Lyapunov’s method for boost converters. IET Power Electron 8(1):11–19CrossRefGoogle Scholar
  6. Costa B, Skrjanc I, Blazic S, Angelov P, 2013 A practical implementation of self-evolving cloud-based control of a pilot plant. In: Cybernetics (CYBCONF), 2013 IEEE international conference on (pp. 7–12). IEEEGoogle Scholar
  7. de Jesús Rubio J (2016) Hybrid controller with observer for the estimation and rejection of disturbances. ISA Transactions 65:445–455CrossRefGoogle Scholar
  8. de Jesús Rubio J (2018a) Discrete time control based in neural networks for pendulums. Appl Soft Comput 68:821–832CrossRefGoogle Scholar
  9. de Jesús Rubio J (2018b) Robust feedback linearization for nonlinear processes control. ISA Transactions 74:155–164CrossRefGoogle Scholar
  10. Jamshidpour E, Poure P, Saadate S (2015) Photovoltaic systems reliability improvement by real-time FPGA-based switch failure diagnosis and fault-tolerant DC–DC converter. IEEE Trans Industr Electron 62(11):7247–7255CrossRefGoogle Scholar
  11. Jin K, Ruan X, Yang M, Xu M (2009) A hybrid fuel cell power system. IEEE Trans Industr Electron 56(4):1212–1222CrossRefGoogle Scholar
  12. Karagiannis D, Astolfi A, Ortega R (2003) Two results for adaptive output feedback stabilization of nonlinear systems. Automatica 39(5):857–866MathSciNetCrossRefzbMATHGoogle Scholar
  13. Karsenti L, Rouchon P, 1997 A tracking controller-observer scheme for DC-to-DC converters. In: Control conference (ECC), 1997 European (pp. 2839–2844). IEEEGoogle Scholar
  14. Kim IH, Son YI (2017) Regulation of a DC/DC boost converter under parametric uncertainty and input voltage variation using nested reduced-order PI observers. IEEE Trans Industr Electron 64(1):552–562CrossRefGoogle Scholar
  15. Li C, Wei F, Yan J, Zhang X, Liu Q, Zha H (2018) A self-paced regularization framework for multilabel learning. IEEE Trans Neural Netw Learn Syst 29(6):2660–2666MathSciNetCrossRefGoogle Scholar
  16. Malekzadeh M, Sadati J, Alizadeh M (2016) Adaptive PID controller design for wing rock suppression using self-recurrent wavelet neural network identifier. Evolv Syst 7(4):267–275CrossRefGoogle Scholar
  17. Malekzadeh M, Khosravi A, Tavan M (2018a) Immersion and invariance-based filtered transformation with application to estimator design for a class of DC-DC converters. Trans Inst Meas Control. Google Scholar
  18. Malekzadeh M, Khosravi A, Tavan M (2018b) Observer based control scheme for DC-DC boost converter using sigma–delta modulator. COMPEL Int J Comput Math Electr Electron Eng 37(2):784–798CrossRefGoogle Scholar
  19. Marino R, Tomei P (1995) Nonlinear control design: geometric, adaptive and robust, vol 1. Prentice Hall, LondonzbMATHGoogle Scholar
  20. Massaoudi Y, Dorsaf E, Gaubert JP, Mehdi D, Damak T (2016) Experimental implementation of new sliding mode control law applied To a DC–DC boost converter. Asian J Control 18(6):2221–2233MathSciNetCrossRefzbMATHGoogle Scholar
  21. Mathew TJ, Sherly E, Alcantud JCR (2018) A multimodal adaptive approach on soft set based diagnostic risk prediction system. J Intell Fuzzy Syst 34(3):1609–1618CrossRefGoogle Scholar
  22. Midya P, Greuel M, Krein PT (1997) Sensorless current mode control-an observer-based technique for DC–DC converters. In Power electronics specialists conference, PESC’97 Record., 28th annual IEEE. 1997. IEEEGoogle Scholar
  23. Oettmeier FM, Neely J, Pekarek S, DeCarlo R, Uthaichana K (2009) MPC of switching in a boost converter using a hybrid state model with a sliding mode observer. IEEE Trans Industr Electron 56(9):3453–3466CrossRefGoogle Scholar
  24. Rubio JJ (2012) Modified optimal control with a back propagation network for robotic arms. IET Control Theory Appl 6(14):2216–2225MathSciNetCrossRefGoogle Scholar
  25. Sadeghi-Tehran P, Cara AB, Angelov P, Pomares H, Rojas I, Prieto A, 2012 Self-evolving parameter-free rule-based controller. In Fuzzy Systems (FUZZ–IEEE), 2012 IEEE International Conference on (pp. 1–8). IEEEGoogle Scholar
  26. Salahshour E, Noei AR, Malekzadeh M (2014) A computerized and on-line super twisting speed control of alternating current asynchronous machine using omron V1000® drive. J Eng Technol 4(1):12–17CrossRefGoogle Scholar
  27. Salahshour E, Malekzadeh M, Gordillo F, Ghasemi J (2018a) Quantum neural network-based intelligent controller design for CSTR using modified particle swarm optimization algorithm. Trans Inst Meas Control. Google Scholar
  28. Salahshour E, Malekzadeh M, Gholipour R, Khorashadizadeh S (2018b) Designing multi-layer quantum neural network controller for chaos control of rod-type plasma torch system using improved particle swarm optimization. Evol Syst, pp. 1–15Google Scholar
  29. Sanders SR, Verghese GC (1992) Lyapunov-based control for switched power converters. IEEE Trans Power Electron 7(1):17–24CrossRefGoogle Scholar
  30. Siwakoti YP, Loh PC, Blaabjerg F, Andreasen SJ, Town GE (2015) Y-source boost dc/dc converter for distributed generation. IEEE Trans Industr Electron 62(2):1059–1069CrossRefGoogle Scholar
  31. Tan SC, Lai YM, Tse CK (2006) A unified approach to the design of PWM-based sliding-mode voltage controllers for basic DC–DC converters in continuous conduction mode. IEEE Trans Circuits Syst I Regul Pap 53(8):1816–1827CrossRefGoogle Scholar
  32. Tan SC, Lai YM, Chi KT (2008) General design issues of sliding-mode controllers in DC–DC converters. IEEE Trans Industr Electron 55(3):1160–1174CrossRefGoogle Scholar
  33. Todorovic MH, Palma L, Enjeti PN (2008) Design of a wide input range DC–DC converter with a robust power control scheme suitable for fuel cell power conversion. IEEE Trans Industr Electron 55(3):1247–1255CrossRefGoogle Scholar
  34. Wai RJ, Shih LC (2011) Design of voltage tracking control for DC–DC boost converter via total sliding-mode technique. IEEE Trans Industr Electron 58(6):2502–2511CrossRefGoogle Scholar
  35. Wai RJ, Shih LC (2012) Adaptive fuzzy-neural-network design for voltage tracking control of a DC–DC boost converter. IEEE Trans Power Electron 27(4):2104–2115CrossRefGoogle Scholar
  36. Wang YX, Yu DH, Kim YB (2014) Robust time-delay control for the DC–DC boost converter. IEEE Trans Industr Electron 61(9):4829–4837CrossRefGoogle Scholar
  37. Zhou X, Angelov P, 2007 Autonomous visual self-localization in completely unknown environment using evolving fuzzy rule-based classifier. In Computational intelligence in security and defense applications, 2007. CISDA 2007. IEEE symposium on (pp. 131–138). IEEEGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Milad Malekzadeh
    • 1
  • Alireza Khosravi
    • 1
    Email author
  • Mehdi Tavan
    • 2
  1. 1.Department of Electrical and Computer EngineeringBabol Noshirvani University of TechnologyBabolIran
  2. 2.Department of Electrical Engineering, Mahmudabad branchIslamic Azad UniversityMahmudabadIran

Personalised recommendations