Advertisement

Evolving Systems

, Volume 10, Issue 4, pp 635–647 | Cite as

Multi-area interconnected power system load frequency control using ELQR based state feedback gain controller

  • Naresh KumariEmail author
  • Nitin Malik
  • A. N. Jha
Original Paper
  • 59 Downloads

Abstract

This paper introduces the Load Frequency Control (LFC) of three area power system utilizing a new intelligent control technique. The proposed controller is the enhanced linear quadratic regulator (ELQR) which is the joined execution of both the Kalman filter (KF) and LQR based state feedback gain controller. Here, the three area power system contains the combination of reheat thermal generator, wind generator and hydro power system. The proposed controller KF is designed to assessment the required state variables at the expense of slight performance degradation. KF uses the state space matrices Q and R and the initial values for the calculation of gain values to assessment the real signal value. In light of the non-linear frequency variation of the three area system, the ELQR predicts the optimal state feedback gain parameters of the controller. This procedure guarantees the system frequency control under the load disturbance influence by minimizing the automatic control error (ACE) and the tie line power variation. The proposed methodology is executed in MATLAB/Simulink working stage and the outcomes are validated with the current techniques such as PSO, BFO, GA, FPA, LQR, LQR-KF and LQR-PSO techniques. The comparison results invariably proves the effectiveness of the proposed method and confirms its potential to solve the related problems.

Keywords

Power system LFC LQR Kalman filter Feedback gain controller Three-area system 

Notes

References

  1. Cai L, He Z, Hu H (2017) A new load frequency control method of multi-area power system via the viewpoints of port-hamiltonian system and cascade system. IEEE Trans Power Syst 32:1689–1700.  https://doi.org/10.1109/tpwrs.2016.2605007 CrossRefGoogle Scholar
  2. Chandra Sekhar G, Sahu R, Baliarsingh A, Panda S (2016) Load frequency control of power system under deregulated environment using optimal firefly algorithm. Int J Electr Power Energy Syst 74:195–211.  https://doi.org/10.1016/j.ijepes.2015.07.025 CrossRefGoogle Scholar
  3. Chaturvedi D, Umrao R, Malik O (2015) Adaptive polar fuzzy logic based load frequency controller. Int J Electr Power Energy Syst 66:154–159.  https://doi.org/10.1016/j.ijepes.2014.10.024 CrossRefGoogle Scholar
  4. de Jesús Rubio J, Lughofer E, Meda-Campaña J et al (2018) Neural network updating via argument Kalman filter for modeling of Takagi-Sugeno fuzzy models. J Intell Fuzzy Syst.  https://doi.org/10.3233/jifs-18425 CrossRefGoogle Scholar
  5. Dong L, Tang Y, He H, Sun C (2017) An Event-triggered approach for load frequency control with supplementary ADP. IEEE Trans Power Syst 32:581–589.  https://doi.org/10.1109/tpwrs.2016.2537984 CrossRefGoogle Scholar
  6. Guha D, Roy P, Banerjee S (2018) Application of backtracking search algorithm in load frequency control of multi-area interconnected power system. Ain Shams Eng J 9:257–276.  https://doi.org/10.1016/j.asej.2016.01.004 CrossRefGoogle Scholar
  7. Jagatheesan K, Anand B, Samanta S et al (2016) Application of flower pollination algorithm in load frequency control of multi-area interconnected power system with nonlinearity. Neural Comput Appl 28:475–488.  https://doi.org/10.1007/s00521-016-2361-1 CrossRefGoogle Scholar
  8. Jiang L, Yao W, Wu Q et al (2012) Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE Trans Power Syst 27:932–941.  https://doi.org/10.1109/tpwrs.2011.2172821 CrossRefGoogle Scholar
  9. Khezri R, Golshannavaz S, Shokoohi S, Bevrani H (2016) Fuzzy logic based fine-tuning approach for robust load frequency control in a multi-area power system. Electric Power Compon Syst 44:2073–2083.  https://doi.org/10.1080/15325008.2016.1210265 CrossRefGoogle Scholar
  10. Khooban M, Niknam T, Blaabjerg F, Dragičević T (2017) A new load frequency control strategy for micro-grids with considering electrical vehicles. Electr Power Syst Res 143:585–598.  https://doi.org/10.1016/j.epsr.2016.10.057 CrossRefGoogle Scholar
  11. Liu X, Zhang Y, Lee K (2017) Coordinated distributed MPC for load frequency control of power system with wind farms. IEEE Trans Ind Electron 64:5140–5150.  https://doi.org/10.1109/tie.2016.2642882 CrossRefGoogle Scholar
  12. Ma M, Chen H, Liu X, Allgöwer F (2014) Distributed model predictive load frequency control of multi-area interconnected power system. Int J Electr Power Energy Syst 62:289–298.  https://doi.org/10.1016/j.ijepes.2014.04.050 CrossRefGoogle Scholar
  13. Mi Y, Fu Y, Li D et al (2016) The sliding mode load frequency control for hybrid power system based on disturbance observer. Int J Electr Power Energy Syst 74:446–452.  https://doi.org/10.1016/j.ijepes.2015.07.014 CrossRefGoogle Scholar
  14. Mosaad M, Salem F (2014) LFC based adaptive PID controller using ANN and ANFIS techniques. J Electr Syst Inf Technol 1:212–222.  https://doi.org/10.1016/j.jesit.2014.12.004 CrossRefGoogle Scholar
  15. Naidu K, Mokhlis H, Bakar A (2014) Multiobjective optimization using weighted sum artificial bee colony algorithm for load frequency control. Int J Electr Power Energy Syst 55:657–667.  https://doi.org/10.1016/j.ijepes.2013.10.022 CrossRefGoogle Scholar
  16. Pan I, Das S (2015) Fractional-order load-frequency control of interconnected power systems using chaotic multi-objective optimization. Appl Soft Comput 29:328–344.  https://doi.org/10.1016/j.asoc.2014.12.032 CrossRefGoogle Scholar
  17. Pan Y, Liu Y, Xu B, Yu H (2016a) Hybrid feedback feedforward: an efficient design of adaptive neural network control. Neural Netw 76:122–134.  https://doi.org/10.1016/j.neunet.2015.12.009 CrossRefzbMATHGoogle Scholar
  18. Pan Y, Sun T, Yu H (2016b) Composite adaptive dynamic surface control using online recorded data. Int J Robust Nonlinear Control 26:3921–3936.  https://doi.org/10.1002/rnc.3541 MathSciNetCrossRefzbMATHGoogle Scholar
  19. Páramo-Carranza L, Meda-Campaña J, de Jesús Rubio J et al (2017) Discrete-time Kalman filter for Takagi–Sugeno fuzzy models. Evol Syst 8:211–219.  https://doi.org/10.1007/s12530-017-9181-0 CrossRefGoogle Scholar
  20. Parmar KS (2014) PSO based PI Controller for the LFC system of an interconnected power system. Int J Comput Appl 88:20–25.  https://doi.org/10.5120/15364-3856 CrossRefGoogle Scholar
  21. Parmar K, Majhi S, Kothari D (2014) LFC of an interconnected power system with multi-source power generation in deregulated power environment. Int J Electr Power Energy Syst 57:277–286.  https://doi.org/10.1016/j.ijepes.2013.11.058 CrossRefGoogle Scholar
  22. Qian D, Tong S, Liu X (2015) Load frequency control for micro hydro power plants by sliding mode and model order reduction. Automatika 56:318–330.  https://doi.org/10.7305/automatika.2015.12.816 CrossRefGoogle Scholar
  23. Rerkpreedapong D, Hasanovic A, Feliachi A (2003) Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Trans Power Syst 18:855–886.  https://doi.org/10.1109/TPWRS.2003.811005 CrossRefGoogle Scholar
  24. Rubio J (2018) Robust feedback linearization for nonlinear processes control. ISA Trans 74:155–164.  https://doi.org/10.1016/j.isatra.2018.01.017 CrossRefGoogle Scholar
  25. Rubio J, Lopez J, Pacheco J, Encinas R (2017) Control of two electrical plants. Asian J Control 20:1504–1518.  https://doi.org/10.1002/asjc.1640 MathSciNetCrossRefzbMATHGoogle Scholar
  26. Rubio J, Lughofer E, Plamen A et al (2018a) A novel algorithm for the modeling of complex processes. Kybernetika 54:79–95.  https://doi.org/10.14736/kyb-2018-1-0079 MathSciNetCrossRefzbMATHGoogle Scholar
  27. Rubio J, Pieper J, Meda-Campaña J et al (2018b) Modelling and regulation of two mechanical systems. IET Sci Meas Technol 12:657–665.  https://doi.org/10.1049/iet-smt.2017.0521 CrossRefGoogle Scholar
  28. Sahu R, Gorripotu T, Panda S (2015) A hybrid DE–PS algorithm for load frequency control under deregulated power system with UPFC and RFB. Ain Shams Eng J 6:893–911.  https://doi.org/10.1016/j.asej.2015.03.011 CrossRefGoogle Scholar
  29. Sahu B, Pati T, Nayak J et al (2016) A novel hybrid LUS–TLBO optimized fuzzy-PID controller for load frequency control of multi-source power system. Int J Electr Power Energy Syst 74:58–69.  https://doi.org/10.1016/j.ijepes.2015.07.020 CrossRefGoogle Scholar
  30. Selvakumaran S, Parthasarathy S, Karthigaivel R, Rajasekaran V (2012) Optimal decentralized load frequency control in a parallel AC-DC interconnected power system through HVDC link using PSO algorithm. Energy Procedia 14:1849–1854.  https://doi.org/10.1016/j.egypro.2011.12.1178 CrossRefGoogle Scholar
  31. Shahalami S, Farsi D (2018) Analysis of load frequency control in a restructured multi-area power system with the Kalman filter and the LQR controller. AEU Int J Electr Commun 86:25–46.  https://doi.org/10.1016/j.aeue.2018.01.011 CrossRefGoogle Scholar
  32. Shankar R, Chatterjee K, Chatterjee T (2012) A control strategy for load frequency control coordinating economic load dispatch and load forecasting Via Kalman filter. Int J Electr Eng Inf 4:495–507.  https://doi.org/10.15676/ijeei.2012.4.3.10 CrossRefGoogle Scholar
  33. Shayeghi H, Shayanfar H, Jalili A (2009) Load frequency control strategies: a state-of-the-art survey for the researcher. Energy Convers Manag 50:344–353.  https://doi.org/10.1016/j.enconman.2008.09.014 CrossRefzbMATHGoogle Scholar
  34. Shivaie M, Kazemi M, Ameli M (2015) A modified harmony search algorithm for solving load-frequency control of non-linear interconnected hydrothermal power systems. Sustain Energy Technol Assess 10:53–62.  https://doi.org/10.1016/j.seta.2015.02.001 CrossRefGoogle Scholar
  35. Sun Y, Li N, Zhao X et al (2016) Robust H ∞ load frequency control of delayed multi-area power system with stochastic disturbances. Neurocomputing 193:58–67.  https://doi.org/10.1016/j.neucom.2016.01.066 CrossRefGoogle Scholar
  36. Yang J, Zeng Z, Tang Y et al (2018) Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory. Energies 8(3):2145–2164CrossRefGoogle Scholar
  37. Yu X, Tomsovic K (2004) Application of Linear Matrix Inequalities for Load Frequency Control With Communication Delays. IEEE Trans Power Syst 19:1508–1515.  https://doi.org/10.1109/tpwrs.2004.83167 CrossRefGoogle Scholar
  38. Zribi M, Al-Rashed M, Alrifai M (2005) Adaptive decentralized load frequency control of multi-area power systems. Int J Electr Power Energy Syst 27:575–583.  https://doi.org/10.1016/j.ijepes.2005.08.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The NorthCap UniversityGurugramIndia
  2. 2.The NorthCap UniversityGurugramIndia
  3. 3.IIT DelhiDelhiIndia

Personalised recommendations