Marine Biodiversity

, Volume 49, Issue 6, pp 2813–2835 | Cite as

Tanaidaceans (Crustacea: Peracarida: Apseudidae) from southern Portugal with description of the new species Apseudopsis formosus, report of five first records and a biogeographic overview: unexpected expansion or understudied hotspot?

  • André N. CarvalhoEmail author
  • Fábio Pereira
  • David Piló
  • Miguel B. Gaspar
  • Patricia Esquete
Original Paper


This study describes Apseudopsis formosus sp. nov., a new apseudomorph tanaidacean species from the Ria Formosa lagoon (southern Portugal). Species description was based on 223 individuals (22 juveniles, 60 males and 141 females), comprising diverse developmental stages (juveniles II, males I and II, preparatory, copulatory and intermediate females). The total length of the studied population ranged from 2.2 to 3.0 mm in juveniles, 2.5 to 4.8 mm in males and 2.9 to 4.9 mm in females. Overall, Apseudopsis formosus sp. nov. differs from congeneric tanaidaceans from the Atlantic Ocean and Mediterranean Sea by the presence of combined different morphological characters such as short pointed rostrum, posterolateral pointed corners on pereonites 2–6, hyposphenium only on pereonite 6, antennular outer flagellum 7- to 10-segmented, inner flagellum 3-segmented and five spines on propodus of pereopod 1, and sexual dimorphism evidenced by a pronounced mid-dorsal triangular wing-shaped protuberance on male merus cheliped, unique in Apseudopsis genus. At each studied developmental stage, some individuals presented abnormalities in spination, having only four spines in one of the propodus of pereopod 1. Additionally, five first records of Apseudopsis from the Algarve coast (A. adami, A. bacescui, A. elisae, A. mediterraneus and A. uncidigitatus) are reported for Portuguese waters. A biogeographic overview of the genus Apseudopsis is presented through the compilation and mapping of all worldwide reported occurrences. Passive dispersion can explain the most recent species distribution, yet not disregarding that the study area is taxonomically understudied. This study contributes to improve the current knowledge on tanaidacean taxonomy and updates the geographical distribution range of the Apseudopsis–complex.


Apseudomorpha Abnormalities Biodiversity Lusitanian province Algarve coast Ria Formosa lagoon 



The authors would like to thank Alexandra Cartaxana and to Begoña Sánchez Chillón for the helpful support with the deposit of the specimens of Apseudopsis formosus sp. nov. in the Museu Nacional de História Natural e da Ciência (MUHNAC), Universidade de Lisboa, Portugal and in the Museo Nacional de Ciencias Naturales (MNCN), Madrid, Spain, respectively. The authors greatly appreciate the invaluable help of Ascenção Ravara with the specimens’ preparation for the SEM imaging and equipment use techniques. The authors acknowledge the Editor of “Marine Biodiversity” (Dr. Stefanie Kaiser) and the anonymous reviewers for valuable comments and suggestions that greatly improved the manuscript.

Funding information

This study was performed within the framework of the project “SNMB-Sul–Gestão das zonas de produção de moluscos bivalves da região algarvia” (MAR-02-01-02-FEAMP-0061), funded by the Portuguese Fisheries Operational Programme (Mar2020) and co-financed by the European Maritime and Fisheries Fund (EMFF 2014–2020). P. Esquete was supported by the Fundação para a Ciência e a Tecnologia (FCT), under postdoctoral grant SFRH/BPD/94985/2013. Thanks are due, for the financial support to Centro de Estudos do Ambiente e do Mar (CESAM, UID/AMB/50017), to FCT/MEC through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities.

Data availability

All data generated or analysed during this study are included in this published article.

Supplementary material

12526_2019_1011_MOESM1_ESM.docx (78 kb)
ESM 1 (DOCX 78 kb)


  1. Almaça C (1985) Zoogeographical considerations on the Iberian brachyuran fauna (Decapoda, Crustacea). Arq Mus Bocage AIII(4):51–68Google Scholar
  2. Almada CV, Toledo JF, Brito A, Levy A, Floeter SR, Robalo JI, Martins J, Almada F (2013) Complex origins of the Lusitania biogeographic province and northeastern Atlantic fishes. Front Biogeogr 5:20–28Google Scholar
  3. Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber RN, Barber A, Bartsch I, Berta A, Błażewicz-Paszkowycz M, Bock P, Boxshall GA, Boyko CB, Brandão SN, Bray RA, Bruce NL, Cairns SD, Chan T-Y, Cheng L, Collins AG, Cribb T, Curini-Galletti M, Dahdouh-Guebas F, Davie PJF, Dawson MN, De Clerck O, Decock W, De Grave S, de Voogd NJ, Domning DP, Emig CC, Erséus C, Eschmeyer WN, Fauchald K, Fautin DG, Feist SW, Fransen CHJM, Furuya H, Garcia-Alvarez O, Gerken S, Gibson D, Gittenberger A, Gofas S, Gómez-Daglio L, Gordon DP, Guiry MD, Hernandez F, Hoeksema BW, Hopcroft RR, Jaume D, Kirk PM, Koedam N, Koenemann S, Kolb JB, Kristensen RM, Kroh A, Lambert G, Lazarus DB, Lemaitre R, Longshaw M, Lowry J, Macpherson E, Madin LP, Mah CL, Mapstone G, McLaughlin PA, Mees J, Meland K, Messing CG, Mills CE, Molodtsova TN, Mooi RD, Neuhaus B, Ng PKL, Nielsen C, Norenburg JL, Opresko DM, Osawa M, Paulay G, Perrin W, Pilger JF, Poore GCB, Pugh PJA, Read GB, Reimer JD, Rius M, Rocha RM, Saiz-Salinas JI, Scarabino V, Schierwater B, Schmidt-Rhaesa A, Schnabel KE, Schotte M, Schuchert P, Schwabe E, Segers H, Self-Sullivan C, Shenkar N, Siegel V, Sterrer W, Stöhr S, Swalla BJ, Tasker ML, Thuesen EV, Timm T, Todaro MA, Turon X, Tyler S, Uetz P, van der Land J, Vanhoorne B, van Ofwegen LP, van Soest RWM, Vanaverbeke J, Walker-Smith GK, Walter TC, Warren A, Williams GC, Wilson SP, Costello MJ (2012) The magnitude of global marine species diversity. Curr Biol 22:1–14Google Scholar
  4. Băcescu M (1961) Contribution a la connaissance des tanaidacés de la Méditerranée Orientale - 1. Les Apseudidae et Kalliapseudidae des Cotes d’Israel. Bull Res Counc Isr 10B:137–170Google Scholar
  5. Băcescu M, Cărăuşu A (1947) Apseudopsis ostroumovi n. sp. Dans la Mer Noire (morphologie, affinités phylogénètiques, écologie). Bull Sect Sci Acad Roum 29:366–383Google Scholar
  6. Bamber RN (2010) In the footsteps of Henrik Nicolaj Krøyer: the rediscovery and redescription of Leptochelia savignyi (Krøyer, 1842) sensu stricto (Crustacea: Tanaidacea: Leptocheliidae). Proc Biol Soc Wash 123(4):289–311Google Scholar
  7. Bamber RN (2011) The marine fauna and flora of the isles of Scilly. Tanaidacea (Crustacea: Peracarida). J Nat Hist 45(29–30):1801–1815Google Scholar
  8. Bamber RN, Sheader M (2005) Apseudomorph Tanaidacea (Crustacea: Malacostraca: Percarida) from shallow waters off Sabah, Malaysia. Syst Biodivers 2:281–303Google Scholar
  9. Bianchi CN (2007) Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580:7–21Google Scholar
  10. Błażewicz-Paszkowycz M, Bamber R, Anderson G (2012) Diversity of Tanaidacea (Crustacea: Peracarida) in the world’s oceans – how far have we come ? PLoS One 7(4):e33068PubMedPubMedCentralGoogle Scholar
  11. Blott SJ, Pye K (2012) Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59:2071–2096Google Scholar
  12. Bosnic I, Cascalho J, Taborda R, Drago T, Hermínio J, Rosa M, Dias J, Garel E (2017) Nearshore sediment transport: coupling sand tracer dynamics with oceanographic forcing. Mar Geol 385:293–303Google Scholar
  13. Boyé A, Legendre P, Grall J, Gauthier O (2017) Constancy despite variability: local and regional macrofaunal diversity in intertidal seagrass beds. J Sea Res 130:107–122Google Scholar
  14. Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30Google Scholar
  15. Carvalho AN, Pereira F, Bosnic I, Taborda R, Drago T, Gaspar MB (2018) Sedimentary dynamics and benthic macrofauna distribution: insights from the shoreface in southern Portugal. J Sea Res 137:9–25Google Scholar
  16. Carvalho S, Cunha MR, Pereira F, Pousão-Ferreira P, Santos MN, Gaspar MB (2012) The effect of depth and sediment type on the spatial distribution of shallow soft-bottom amphipods along the southern Portuguese coast. Helgol Mar Res 66:489–501Google Scholar
  17. Carvalho S, Moura A, Cúrdia J, Cancela da Fonseca L, Santos MN (2013) How complementary are epibenthic assemblages in artificial and nearby natural rocky reefs? Mar Environ Res 92:170–177PubMedGoogle Scholar
  18. Chatzinikolaou E, Arvanitidis C (2017) Benthic communities and environmental parameters in three Mediterranean ports (Sardinia, Crete, Tunisia). Hellenic Center for Marine Research. [dataset] accessed at: on 2018-10-01
  19. Constantino R, Gaspar MB, Tata-Regala J, Carvalho S, Cúrdia J, Drago T, Taborda R, Monteiro CC (2009) Clam dredging effects and subsequent recovery of benthic communities at different depth ranges. Mar Environ Res 67:89–99PubMedGoogle Scholar
  20. Costa M, Silva R, Vitorino J (2001) Contribuição para o estudo do clima de agitação marítima na costa portuguesa, in: Proceedings of 2as Jornadas Portuguesas de Engenharia Costeira e Portuária. International Navigation Association PIANC, Sines, p 20Google Scholar
  21. Cruz S, Gamito S, Marques JC (2003) Spatial distribution of Peracarids in the intertidal zone of the ria Formosa (Portugal). Crustaceana 76(4):411–431Google Scholar
  22. Cunha MR, Sorbe JC, Moreira MH (1999) Spatial and seasonal changes of brackish peracaridan assemblages and their relation to some environmental variables in two tidal channels of the Ria de Aveiro (NW Portugal). Mar Ecol Prog Ser 190:69–87Google Scholar
  23. Dauvin JC, Bakalem A, Baffreau A, Grimes S (2017) Benthic ecological status of Algerian harbours. Mar Pollut Bull 125:378–388PubMedGoogle Scholar
  24. Dubois A (2010) Zoological nomenclature in the century of extinctions: priority vs usage. Org Divers Evol 10:259–274Google Scholar
  25. Echavarri-Erasun B, Juanes JA, García-Castrillo G, Revilla JA (2007) Medium-term responses of rocky bottoms to sewage discharges from a Deepwater outfall in the NE Atlantic. Mar Pollut Bull 54:941–954PubMedGoogle Scholar
  26. Esquete P, Bamber RN, Moreira J, Troncoso JS (2012a) Apseudopsis adami, a new species of tanaidacean (Crustacea: Peracarida) from the NW Iberian Peninsula: postmarsupial development and remarks on morphological characters. Helgol Mar Res 66(4):601–619Google Scholar
  27. Esquete P, Bamber RN, Moreira J, Troncoso JS (2012b) Redescription and postmarsupial development of Apseudopsis latreillii (Crustacea: Tanaidacea). J Mar Biol Assoc UK 92:1023–1041Google Scholar
  28. Esquete P, Fernandez-Gonzalez V (2017) Description, systematics and ecology of a new tanaidacean (Crustacea, Peracarida) species from Mediterranean fish farms. Helgol Mar Res 70:27Google Scholar
  29. Esquete P, Fersi A, Dauvin J-C (2019) The family Apseudidae Leach, 1814 (Crustacea: Tanaidacea) in the Gulf of Gabès (Mediterranean Sea): taxonomic and biogeographic remarks and description of Apseudopsis gabesi Esquete, sp. nov. Mar Biodivers 49(4):1695–1711Google Scholar
  30. Esquete P, Moreira J, Troncoso JS (2011) Peracarid assemblages of Zostera meadows in an estuarine ecosystem (O grove inlet, NW Iberian Peninsula): spatial distribution and seasonal variation. Helgol Mar Res 65:445–455Google Scholar
  31. Esquete P, Ramos E, Riera R (2016) New data on the Tanaidacea (Crustacea: Peracarida) from the Canary Islands, with a description of a new species of Apseudopsis. Zootaxa 4093(2):248–260PubMedGoogle Scholar
  32. Fabião JPF, Rodrigues MFG, Fortunato AB, Jacob JMQB, Cravo AMF (2016) Water exchanges between a multi-inlet lagoon and the ocean: the role of forcing mechanisms. Ocean Dyn 66:173–194Google Scholar
  33. Fariñas-Franco JM, Allcock L, Smyth D, Roberts D (2013) Community convergence and recruitment of keystone species as performance indicators of artificial reefs. J Sea Res 78:59–74Google Scholar
  34. Fersi A, Esquete P, Neifar L, Dauvin J-C (in press) Tanaidaceans (Crustacea: Peracarida) from the Gulf of Gabès (Mediterranean Sea) Cah biol marGoogle Scholar
  35. Freitas R, Ricardo F, Pereira F, Sampaio L, Carvalho S, Gaspar M, Quintino V, Rodrigues AM (2011) Benthic habitat mapping: concerns using a combined approach (acoustic, sediment and biological data). Estuar Coast Shelf Sci 92:598–606Google Scholar
  36. Gamito S (2008) Three main stressors acting on the ria Formosa lagoonal system (southern Portugal): physical stress, organic matter pollution and the land–ocean gradient. Estuar Coast Shelf Sci 77:710–720Google Scholar
  37. Garel E, Laiz I, Drago T, Relvas P (2016) Characterisation of coastal counter-currents on the inner shelf of the Gulf of Cadiz. J Mar Syst 155:19–34Google Scholar
  38. Gaspar MB, Carvalho S, Constantino R, Tata-Regala J, Cúrdia J, Monteiro CC (2009) Can we infer dredge fishing effort from macrobenthic community structure? ICES J Mar Sci 66:2121–2132Google Scholar
  39. Guţu M (2002) Contributions to the knowledge of the genus Apseudes leach, 1814 (Crustacea: tanaidacea, Apseudomorpha) from the Mediterranean Basin and north African Atlantic. Trav Mus Hist Nat Grigore Antipa 44:19–39Google Scholar
  40. Guţu M (2006) New apseudomorph taxa (Crustacea, Tanaidacea) of the world ocean. Curtea Veche, Bucharest, p 318Google Scholar
  41. Holdich DM, Jones JA (1983) Tanaids - keys and notes for the identification of the species. Cambridge University Press, London, The Linnean Society of London & The estuarine and Brackish-Water Sciences Association, p 98Google Scholar
  42. Koukouras A (2010) Check-list of marine species from Greece. Aristotle University of Thessaloniki, assembled in the framework of the EU FP7 PESI project. [dataset] Accessed 22 May 2018
  43. Larsen K (2005) Deep-sea tanaidacea (Peracarida) from the Gulf of Mexico. Crustaceana, monographs 5, brill: Leiden, pp 382Google Scholar
  44. Larsen K, Froufe E (2010) Identification of polymorphic species within groups of morphologically conservative taxa: combining morphological and molecular techniques. In: Nimis PL, Vignes Lebbe R (eds) Tools for identifying biodiversity: progress and problems. EUT Edizioni Università di Trieste, Triestre, pp 301–305Google Scholar
  45. Larsen K, Froufe E (2013) A new polymorphic species of Leptochelia (Crustacea: Tanaidacea) from Guinea Bissau, West Africa, with comments on genetic variation within Leptochelia. Afr Invertebr 54(1):105–125Google Scholar
  46. Leclerc J-C, Riera P, Laurans M, Leroux C, Lévêque L, Davoult D (2015) Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests. Estuar Coast Shelf Sci 152:11–22Google Scholar
  47. Lourido A, Moreira J, Troncoso JS (2008) Assemblages of peracarid crustaceans in subtidal sediments from the Ría de Aldán (Galicia, NW Spain). Helgol Mar Res 62:289–301Google Scholar
  48. Marques JC, Bellan-Santini D (1990) Benthic amphipod fauna (Crustacea) of the Portuguese coast: biogeographical considerations. Mar Nat 3:43–51Google Scholar
  49. Marquiegui MA, Sorbe JC (1999) Influence of near-bottom environmental conditions on the structure of bathyal macrobenthic crustacean assemblages from the Capbreton canyon (Bay of Biscay, NE Atlantic). Acta Oecol 20(4):353–362Google Scholar
  50. Martins R, Quintino V, Rodrigues AM (2013) Diversity and spatial distribution patterns of the soft-bottom macrofauna communities on the Portuguese continental shelf. J Sea Res 83:173–186Google Scholar
  51. Martins R, Sampaio L, Quintino V, Rodrigues AM (2014) Diversity, distribution and ecology of benthic molluscan communities on the Portuguese continental shelf. J Sea Res 93:75–89Google Scholar
  52. Norman AM, Stebbing TRR (1886) On the Crustacea Isopoda of the ‘lightning’, ‘porcupine’ and ‘valorous’ expeditions. Trans Zool Soc Lond 12(part IV, 1):77–141 Pls 16–27Google Scholar
  53. Patarnello T, Volckaert F, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444PubMedGoogle Scholar
  54. Piló D, Carvalho AN, Pereira F, Coelho HE, Gaspar MB (2019) Evaluation of macrobenthic community responses to dredging through a multimetric approach: effective or apparent recovery? Ecol Indic 96:656–668Google Scholar
  55. QGIS Development Team (2018) QGIS geographic information system. Open Source Geospatial Foundation Project. URL
  56. Queiroga H, Cruz T, Dos Santos A, Dubert J, González-Gordillo JI, Paula J, Peliz Á, Santos AMP (2007) Oceanographic and behavioural processes affecting invertebrate larval dispersal and supply in the western Iberia upwelling ecosystem. Prog Oceanogr 74:174–191Google Scholar
  57. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL Google Scholar
  58. Relvas P, Barton ED (2005) A separated jet and coastal counterflow during upwelling relaxation off Cape São Vicente (Iberian Peninsula). Cont Shelf Res 25:29–49Google Scholar
  59. Relvas P, Barton ED, Dubert J, Oliveira PB, Peliz Á, da Silva JCB, Santos AMP (2007) Physical oceanography of the western Iberia ecosystem: latest views and challenges. Prog Oceanogr 74:149–173Google Scholar
  60. Riera R, Tuya F, Ramos E, Rodríguez M, Monterroso Ó (2012) Variability of macrofaunal assemblages on the surroundings of a brine disposal. Desalination 291:94–100Google Scholar
  61. Rishworth GM, Perissinotto R, Błażewicz M (2019) Sinelobus stromatoliticus sp. nov. (Peracarida: Tanaidacea) found within extant peritidal stromatolites. Mar Biodivers 49(2):783–794Google Scholar
  62. Sánchez RF, Mason E, Relvas P, Silva AJ, Peliz Á (2006) On the inner-shelf circulation in the northern gulf of Cádiz, southern Portuguese shelf. Deep-Sea Res Part II 53:1198–1218Google Scholar
  63. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, Mcmanus E, Molnar J, Recchia CA, Robertson J (2007) Marine Ecoregions of the World: a bioregionalization of coastal and shelf areas. BioScience 57(7):573–583Google Scholar
  64. Sprung M (1994) Macrobenthic secondary production in the intertidal zone of the ria Formosa – a lagoon in southern Portugal. Estuar Coast Shelf Sci 38:539–558Google Scholar
  65. Voultsiadou E, Pyrounaki M-M, Chintiroglou C (2007) The habitat engineering tunicate Microcosmus sabatieri Roule, 1885 and its associated peracarid epifauna. Estuar Coast Shelf Sci 74:197–204Google Scholar
  66. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer–Verlag, New YorkGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung 2019

Authors and Affiliations

  1. 1.Instituto Português do Mar e da Atmosfera (IPMA)OlhãoPortugal
  2. 2.Centro de Ciências do Mar (CCMAR)Universidade do AlgarveFaroPortugal
  3. 3.Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de BiologiaUniversidade de AveiroAveiroPortugal

Personalised recommendations