A latitudinal diversity gradient of shallow-water gorgonians (Cnidaria: Octocorallia: Alcyonacea) along the Tropical Eastern Pacific Ocean: testing for underlying mechanisms

  • Mónica Núñez–FloresEmail author
  • Andrés Solórzano
  • Cristián E. Hernández
  • Pablo J. López–González
Original Paper


One of the most pervasive patterns leading the distribution of life on Earth is the latitudinal diversity gradient (LDG). Considering its generality, understanding its main causes is critical to predicting climatically driven biodiversity loss. Here, we analyzed the LDG pattern in gorgonians (Octocorallia: Alcyonacea) in the Tropical Eastern Pacific Ocean (TEP), where they form a widespread, species-rich, and ecologically important group of marine benthic organisms. We compiled a database of the geographic occurrence of shallow-water (< 40 m depth) gorgonians with a range extent restricted to the TEP, in order to evaluate the shape of their LDG and to test different hypotheses that could explain these patterns (Rapoport’s and mid-domain effects), as well as the possible underlying mechanisms (source-sink dynamics and climatic variability hypothesis). The species richness showed a peak at 7–10° N with > 60 spp., declining toward the north and south. The gorgonians exhibit an increase of their distribution ranges at higher latitudes, supporting predictions of Rapoport’s effect, an effect rarely found in TEP marine faunas. This pattern is likely the result of a decrease of gorgonian temperature tolerances at lower latitudes. We highlight the existence of at least four gorgonian assemblages within the TEP exhibiting distinctive temperature adaptations, and a strong change in species composition with latitude. Our results indicate that sea temperature is an important factor shaping the distribution of gorgonians in the TEP, as in several other marine taxa.


Biodiversity Rapoport’s effect Climatic variability hypothesis Mid-domain effect Source-sink dynamics 



We thank the editor Bert W. Hoeksema and the two anonymous reviewers for their comments and suggestions that greatly improved the final version of this manuscript.

Funding information

This study was funded by CONICYT–PCHA/Doctorado Nacional/2017–21170438 (NFM) and 2018–21180471 (AS), and FONDECYT–1170815 grant (CEH).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Sampling and field studies

Not applicable.

Data availability

The data generated and analyzed during this study are included in the supplementary information files.

Supplementary material

12526_2019_1006_MOESM1_ESM.docx (32 kb)
ESM 1 (DOCX 22 kb)
12526_2019_1006_MOESM2_ESM.docx (58 kb)
ESM 2 (DOCX 30 kb)
12526_2019_1006_MOESM3_ESM.docx (200 kb)
ESM 3 (DOCX 200 kb)


  1. Aguirre H, Shaw SR, Rodríguez-Jiménez A (2018) Contrasting patterns of altitudinal distribution between parasitoid wasps of the subfamilies Braconinae and Doryctinae (Hymenoptera: Braconidae). Insect Conserv Divers 11:219–229. CrossRefGoogle Scholar
  2. Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239. CrossRefGoogle Scholar
  3. Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clercj O (2018) Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284. CrossRefGoogle Scholar
  4. Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci U S A 112:6110–6115. CrossRefGoogle Scholar
  5. Bayer FM (1981) Key to the genera of Octocorallia exclusive of Pennatulacea (Coelenterata: Anthozoa), with diagnoses of new taxa. Proc Biol Soc Wash 94:902–947Google Scholar
  6. Beketov MA (2009) The Rapoport effect is detected in a river system and is based on nested organization. Glob Ecol Biogeogr 18:498–506. CrossRefGoogle Scholar
  7. Breedy O, Cortés J (2011) Morphology and taxonomy of a new species of Leptogorgia (Cnidaria: Octocorallia: Gorgoniidae) in Cocos Island National Park, Pacific Costa Rica. Proc Biol Soc Wash 124:62–69. CrossRefGoogle Scholar
  8. Breedy O, Guzmán HM (2002) A revision of the genus Pacifigorgia (Coelenterata: Octocorallia: Gorgoniidae). Proc Biol Soc Wash 115:782–839Google Scholar
  9. Breedy O, Guzman HM (2004) New species of the gorgoniian genus Pacifigorgia (Coelenterata: Octocorallia: Gorgoniidae) from Pacific Panama. Zootaxa 541:1–15CrossRefGoogle Scholar
  10. Breedy O, Guzman HM (2005) A new species of Leptogorgia (Coelenterata: Octocorallia: Gorgoniidae) from the shallow waters of the eastern Pacific. Zootaxa 899:1–11CrossRefGoogle Scholar
  11. Breedy O, Guzman HM (2007) A revision of the genus Leptogorgia Milne Edwards & Haime, 1857. Zootaxa 1419:1–90. CrossRefGoogle Scholar
  12. Breedy O, Guzman HM (2008) Leptogorgia ignita, a new shallow-water coral species (Octocorallia: Gorgoniidae) from the tropical eastern Pacific. J Mar Biol Assoc UK 88:893–899. CrossRefGoogle Scholar
  13. Breedy O, Guzman HM (2011) A revision of the genus Heterogorgia Verrill, 1868 (Anthozoa: Octocorallia: Plexauridae). Zootaxa 2995:27–44. CrossRefGoogle Scholar
  14. Breedy O, Guzman HM (2015) A revision of the genus Muricea Lamouroux, 1821 (Anthozoa, Octocorallia) in the eastern Pacific. Part I: Eumuricea Verrill, 1869 revisited. Zookeys 537:1–32. CrossRefGoogle Scholar
  15. Breedy O, Guzman HM (2016a) A new species of Pacifigorgia (Coelenterata: Octocorallia: Gorgoniidae) from Panamá. Zootaxa 128:1–10. CrossRefGoogle Scholar
  16. Breedy O, Guzman HM (2016b) A revision of the genus Muricea Lamouroux, 1821 (Anthozoa, Octocorallia) in the eastern Pacific. Part II. Zookeys 581:1–69. CrossRefGoogle Scholar
  17. Breedy O, Guzman HM (2018) Revision of the genus Adelogorgia Bayer, 1958 (Cnidaria: Anthozoa: Octocorallia) with the description of three new species. Zootaxa 4369:327–348. CrossRefGoogle Scholar
  18. Breedy O, Vargas S (2009) A revision of the genus Eugorgia Verrill, 1868. Zootaxa 46:1–46Google Scholar
  19. Briggs JC (1974) Marine zoogeography. McGraw-Hill, New YorkGoogle Scholar
  20. Chaudhary C, Saeedi H, Costello MJ (2016) Bimodality of latitudinal gradients in marine species richness. Trends Ecol Evol 31:670–676. CrossRefGoogle Scholar
  21. Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol 366:56–69. CrossRefGoogle Scholar
  22. Colwell RK (2008) RangeModel: tools for exploring and assessing geometric constraints on species richness (the mid-domain effect) along transects. Ecography 31:4–7. CrossRefGoogle Scholar
  23. Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. Am Nat 144:570–595. CrossRefGoogle Scholar
  24. Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76. CrossRefGoogle Scholar
  25. Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns:what have we learned so far? Am Nat 163:E1–E23.
  26. Connolly SR, Bellwood DR, Hughes TP (2003) Indo-pacific biodiversity of coral reefs: deviations from a mid-domain model. Ecology 84:2178–2190. CrossRefGoogle Scholar
  27. Cortés J, Enochs IC, Sibaja-Cordero J et al (2016) Marine biodiversity of eastern tropical Pacific coral reefs. In: Glynn PW, Manzello DP, Enochs IC (eds) Coral reefs of the Eastern Tropical Pacific. Springer, Dordrecht, pp 203–250Google Scholar
  28. Costello MJ, Tsai P, Wong PS, Cheung AKL, Basher Z, Chaudhary C (2017) Marine biogeographic realms and species endemicity. Nat Commun 8:1–9. CrossRefGoogle Scholar
  29. Daly M, Brugler MR, Cartwright P et al (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127–182.Google Scholar
  30. Dueñas LF, Tracey DM, Crawford AJ, Wilke T, Alderslade P, Sánchez JA (2016) The Antarctic circumpolar current as a diversification trigger for deep-sea octocorals. BMC Evol Biol 16:2. CrossRefGoogle Scholar
  31. Edgar GJ, Stuart-Smith RD, Willis TJ et al (2014) Global conservation outcomes depend on marine protected areas with five key features. Nature 506:216–220. CrossRefGoogle Scholar
  32. Fernandez MO, Marques AC (2017) Diversity of diversities: a response to Chaudhary, Saeedi, and Costello. Trends Ecol Evol 32:232–234. CrossRefGoogle Scholar
  33. Fiedler PC, Lavín MF (2017) Oceanographic conditions of the eastern tropical Pacific. In: Glynn PW, Manzello DP, Enochs IC (eds) Coral reefs of the Eastern Tropical Pacific. Springer, Dordrecht, pp 59–83CrossRefGoogle Scholar
  34. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227. CrossRefGoogle Scholar
  35. Gaston KJ, Blackburn TM, Spicer JI (1998) Rapoport’s rule: time for an epitaph? Trends Ecol Evol 13:70–74. CrossRefGoogle Scholar
  36. Gaston KJ, Chown SL (1999) Why Rapoport’s rule does not generalise. Oikos 84:309–312. CrossRefGoogle Scholar
  37. Glynn PW, Alvarado JJ, Banks S et al (2017) Eastern Pacific coral reef provinces, coral community structure and composition: an overview. In: Glynn PW, Manzello DP, Enochs IC (eds) Coral reefs of the Eastern Tropical Pacific. Springer, Dordrecht, pp 107–176CrossRefGoogle Scholar
  38. Glynn PW, Ault JS (2000) A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs 19:1–23. CrossRefGoogle Scholar
  39. Grytnes JA (2003) Ecological interpretations of the mid-domain effect. Ecol Lett 6:883–888. CrossRefGoogle Scholar
  40. Guzman HM, Breedy O (2012) Pacifigorgia marviva (Anthozoa: Octocorallia) a new species from Coiba National Park, Pacific Panama. J Mar Biol Assoc UK 92:693–698. CrossRefGoogle Scholar
  41. Hastings PA (2000) Biogeography of the tropical Eastern Pacific: distribution and phylogeny of chaenopsid fishes. Zool J Linnean Soc 128:319–335. CrossRefGoogle Scholar
  42. Hernández CE, Moreno RA, Rozbaczylo N (2005) Biogeographical patterns and Rapoport’s rule in southeastern Pacific benthic polychaetes of the Chilean coast. Ecography 28:363–373. CrossRefGoogle Scholar
  43. Hillebrand H (2004a) Strength, slope and variability of marine latitudinal gradients. Mar Ecol Prog Ser 273:251–267. CrossRefGoogle Scholar
  44. Hillebrand H (2004b) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211. CrossRefGoogle Scholar
  45. Hoeksema BW (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle. In: Renema W (ed) Biogeography, time, and place: distributions, barriers, and islands. Springer, Berlin, pp 117–178CrossRefGoogle Scholar
  46. Hoeksema BW (2015) Latitudinal species diversity gradient of mushroom corals off eastern Australia: a baseline from the 1970s. Estuar Coast Shelf Sci 165:190–198. CrossRefGoogle Scholar
  47. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448. CrossRefGoogle Scholar
  48. Lewallen EA, van Wijnen AJ, Bonin CA, Lovejoy NR (2017) Flyingfish (Exocoetidae) species diversity and habitats in the eastern tropical Pacific Ocean. Mar Biodivers 48:1755–1765. CrossRefGoogle Scholar
  49. Lubchenco J, Palumbi SR, Gaines SD, Andelman S (2003) Plugging a hole in the ocean : the emerging science of marine reserves. Ecol Appl 13:S3–S7.[0003:PAHITO]2.0.CO;2 CrossRefGoogle Scholar
  50. Luo Z, Tang S, Li C, Chen J, Fang H, Jiang Z (2011) Do Rapoport’s rule, mid-domain effect or environmental factors predict latitudinal range size patterns of terrestrial mammals in China? PLoS One 6:e27975. CrossRefGoogle Scholar
  51. Macpherson E (2002) Large-scale species-richness gradients in the Atlantic Ocean. Proc R Soc B Biol Sci 269:1715–1720. CrossRefGoogle Scholar
  52. Mannion PD, Upchurch P, Benson RBJ, Goswami A (2014) The latitudinal biodiversity gradient through deep time. Trends Ecol Evol 29:42–50. CrossRefGoogle Scholar
  53. McClain CR, Etter RJ (2005) Mid-domain models as predictors of species diversity patterns: bathymetric diversity gradients in the deep sea. Oikos 109:555–566. CrossRefGoogle Scholar
  54. McFadden CS, France SC, Sánchez JA, Alderslade P (2006) A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol Phylogenet Evol 41:513–527. CrossRefGoogle Scholar
  55. McFadden CS, Sanchez JA, France SC (2010) Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integr Comp Biol 50:389–410. CrossRefGoogle Scholar
  56. Menegotto A, Rangel TF (2018) Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness. Nat Commun 9:4713. CrossRefGoogle Scholar
  57. Mittelbach GG, Schemske DW, Cornell HV et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331. CrossRefGoogle Scholar
  58. Montes C, Cardona A, Jaramillo C et al (2015) Middle Miocene closure of the Central American seaway. Science 348:226–229. CrossRefGoogle Scholar
  59. Mora C, Robertson DR (2005) Causes of latitudinal gradients in species richness: a test with fishes of the tropical eastern pacific. Ecology 86:1771–1782. CrossRefGoogle Scholar
  60. Moreno RA, Rivadeneira MM, Hernández CE, Sampértegui S, Rozbaczylo N (2008) Do Rapoport’s rule, the mid-domain effect or the source-sink hypotheses predict bathymetric patterns of polychaete richness on the Pacific coast of South America? Glob Ecol Biogeogr 17:415–423. CrossRefGoogle Scholar
  61. Mouillot D, Parravicini V, Bellwood DR, Leprieur F, Huang D, Cowman PF, Albouy C, Hughes TP, Thuiller W, Guilhaumon F (2016) Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat Commun 7:10359. CrossRefGoogle Scholar
  62. O’Dea A, Lessios HA, Coates AG et al (2016) Formation of the Isthmus of Panama. Sci Adv 2:e1600883. CrossRefGoogle Scholar
  63. Oksanen J, Blanchet FG, Friendly M, et al (2019) Package “vegan”: community ecology package.Google Scholar
  64. Olvera U, Hernández O, Sánchez C, Gómez-Gutiérrez J (2018) Two new endemic species of Gorgoniidae (Cnidaria, Anthozoa, Octocorallia) from Revillagigedo Archipelago, Mexico. Zootaxa 4442:523–538. CrossRefGoogle Scholar
  65. Pintor AFV, Schwarzkopf L, Krockenberger AK (2015) Rapoport’s rule: do climatic variability gradients shape range extent? Ecol Monogr 85:643–659. CrossRefGoogle Scholar
  66. Powell MG, Beresford VP, Colaianne BA (2012) The latitudinal position of peak marine diversity in living and fossil biotas. J Biogeogr 39:1687–1694. CrossRefGoogle Scholar
  67. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing. R Foundation for Statistical ComputingGoogle Scholar
  68. Robertson D, Cramer K (2009) Shore fishes and biogeographic subdivisions of the tropical eastern Pacific. Mar Ecol Prog Ser 380:1–17. CrossRefGoogle Scholar
  69. Rodriguez-Girones MA, Santamaria L (2006) A new algorithm to calculate the nestedness temperature of presence-absence matrices. J Biogeogr 33:924–935. CrossRefGoogle Scholar
  70. Rohde K (1996) Rapoport’s rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodivers Lett 3:10. CrossRefGoogle Scholar
  71. Rohde K, Heap M, Heap D (1993) Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. Am Nat 142:1–16. CrossRefGoogle Scholar
  72. Roy K, Witman JD (2009) Spatial patterns of species diversity in the shallow marine invertebrates: patterns, processes, and prospects. In: Witman JD, Roy K (eds) Marine macroecology. University of Chicago Press, Chicago, pp 101–121CrossRefGoogle Scholar
  73. Roy K, Jablonski D, Valentine JW (1994) Eastern Pacific molluscan provinces and latitudinal diversity gradient: no evidence for “Rapoport’s rule”. Proc Natl Acad Sci 91:8871–8874. CrossRefGoogle Scholar
  74. Roy K, Jablonski D, Valentine JW, Rosenberg G (1998) Marine latitudinal diversity gradients: tests of causal hypotheses. Proc Natl Acad Sci U S A 95:3699–3702. CrossRefGoogle Scholar
  75. Ruggiero A, Werenkraut V (2007) One-dimensional analyses of Rapoport’s rule reviewed through meta-analysis. Glob Ecol Biogeogr 16:401–414. CrossRefGoogle Scholar
  76. Sánchez JA (2016) Diversity and evolution of octocoral animal forests at both sides of tropical America. In: Marine animal forests. Springer International Publishing, Cham, pp 1–33Google Scholar
  77. Sánchez JA, Lasker HR, Taylor DJ (2003) Phylogenetic analyses among octocorals (Cnidaria): mitochondrial and nuclear DNA sequences (lsu-rRNA, 16S and ssu-rRNA, 18S) support two convergent clades of branching gorgonians. Mol Phylogenet Evol 29:31–42. CrossRefGoogle Scholar
  78. Schipper J, Chanson JS, Chiozza F et al (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230. CrossRefGoogle Scholar
  79. Šizling AL, Storch D, Keil P (2009) Rapoport’s rule, species tolerances, and the latitudinal diversity gradient: geometric considerations. Ecology 90:3575–3586. CrossRefGoogle Scholar
  80. Soler-Hurtado MDM, López-González PJ (2012) Two new gorgonian species (Anthozoa: Octocorallia: Gorgoniidae) from Ecuador (eastern Pacific). Mar Biol Res 8:380–387. CrossRefGoogle Scholar
  81. Soler-Hurtado MDM, Machordom A, Muñoz J, López-González P (2016) New records of the genera Leptogorgia, Pacifigorgia and Eugorgia (Octocorallia: Gorgoniidae) from Ecuador, with a description of a new species. Sci Mar 80:369–394. CrossRefGoogle Scholar
  82. Spalding MD, Fox HE, Allen GR et al (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583. CrossRefGoogle Scholar
  83. Stevens G (1996) Extending Rapoport’s rule to Pacific marine fishes. J Biogeogr 23:149–154. CrossRefGoogle Scholar
  84. Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256. CrossRefGoogle Scholar
  85. Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911. CrossRefGoogle Scholar
  86. Strona G, Fattorini S (2014) On the methods to assess significance in nestedness analyses. Theory Biosci 133:179–186. CrossRefGoogle Scholar
  87. Strona G, Galli P, Seveso D, et al (2014) Nestedness for Dummies (NeD): a user-friendly web interface for exploratory nestedness analysis. J Stat Softw 59. doi:
  88. Strona G, Stefani F, Galli P, Fattorini S (2013) A protocol to compare nestedness among submatrices. Popul Ecol 55:227–239. CrossRefGoogle Scholar
  89. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Vanden Berghe E, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101. CrossRefGoogle Scholar
  90. Tomašových A, Kennedy JD, Betzner TJ, et al (2016) Unifying latitudinal gradients in range size and richness across marine and terrestrial systems. Proc R Soc B Biol Sci 283. doi:
  91. Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281. CrossRefGoogle Scholar
  92. Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17. CrossRefGoogle Scholar
  93. Valentine JW, Jablonski D (2010) Origins of marine patterns of biodiversity: some correlates and applications. Palaeontology 53:1203–1210. CrossRefGoogle Scholar
  94. Waheed Z, Hoeksema BW (2013) A tale of two winds: species richness patterns of reef corals around the Semporna peninsula, Malaysia. Mar Biodivers 43:37–51. CrossRefGoogle Scholar
  95. Wang C, Enfield DB (2001) The tropical Western Hemisphere warm pool. Geophys Res Lett 28:1635–1638. CrossRefGoogle Scholar
  96. Whitaker D, Christman M (2010) Package “clustsig”: title significant cluster analysisGoogle Scholar
  97. Williams GC, Breedy O (2004) The Panamic gorgonian genus Pacifigorgia (Octocorallia: Gorgoniidae) in the Galapagos Archipelago, with descriptions of three new species. Proc Calif Acad Sci 55:55–88Google Scholar
  98. Willig MR, Presley SJ (2018) Latitudinal gradients of biodiversity: theory and empirical patterns. In: DellaSala, Dominick Goldstein M (eds) Encyclopedia of the Anthropocene. Elsevier, Amsterdam, pp 13–19CrossRefGoogle Scholar
  99. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309. CrossRefGoogle Scholar
  100. Wirshing HH, Messing CG, Douady CJ, Reed J, Stanhope MJ, Shivji MS (2005) Molecular evidence for multiple lineages in the gorgonian family Plexauridae (Anthozoa: Octocorallia). Mar Biol 147:497–508. CrossRefGoogle Scholar
  101. Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1997) A comparative analysis of nested subset patterns of species composition. Oecologia 113:1–20. CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung 2019

Authors and Affiliations

  1. 1.Programa de Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  2. 2.Programa de Doctorado en Biología Integrada, Facultad de BiologíaUniversidad de SevillaSevilleSpain
  3. 3.Programa de Doctorado en Ciencias Geológicas, Facultad de Ciencias QuímicasUniversidad de ConcepciónConcepciónChile
  4. 4.Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  5. 5.Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de BiologíaUniversidad de SevillaSevilleSpain

Personalised recommendations