Advertisement

How to achieve internal fertilization without a vagina: the study case of the genus Archilina Ax, 1959 (Platyhelminthes, Proseriata) from Canary Islands

  • Fabio ScarpaEmail author
  • Daria Sanna
  • Piero Cossu
  • Tiziana Lai
  • Marco Casu
  • Marco Curini-Galletti
MeioLanza
Part of the following topical collections:
  1. Interstitial and Cave Diversity in Atlantic Oceanic Islands

Abstract

Five new species of Monocelididae (Platyhelminthes, Proseriata) are described from Eastern Atlantic. Three new Archilina species came from the Canary Islands. Two of them have the cirrus provided with a stylet, cylindrical in Archilina regina sp. nov. and spike-like in Archilina imperatrix sp. nov. Both species lack a vaginal pore: ventrally to the bursa, an area of vacuolar parenchyma is present. Archilina coronata sp. nov. lacks a stylet and has a vaginal pore. The three species are sister taxa to Duploperaclistus circocirrus and Duplominona miranda sp. nov., from Brittany (France), characterized by an extremely long, tubular stylet, about 150 μm in length. A further Archilina is described from Cabo Verde Islands, Archilina regisfilia sp. nov., with a funnel-shaped cirrus and without a vaginal pore. The finding in the Canary Islands of closely related species, occurring abundantly in the same habitats and differing for presence/absence of stylet and vaginal pore, suggests a role of the stylet in allowing internal fertilization in species without external vagina. The phylogeny presented, based on rDNA 18S and 28S genes, does not reflect present systematics of the Monocelididae, and the monophyly of most genera is not supported.

Keywords

Meiofauna Phylogeny Taxonomy Specie delimitation Hypodermic impregnation 

Notes

Acknowledgements

We thank Prof. Dr. Katrine Worsaae and Dr. Alejandro Martinez for organizing the workshop in Lanzarote in autumn 2011. We acknowledge for partial funding support ASSEMBLE grant agreement no. 227799 given to FS, VD for sampling in Roscoff, and to MCG for sampling in Faro. We thank the Director of the “Parco Nazionale dell’Isola di Asinara” for sampling permission. Dr. Valentina Delogu is thanked for her skillful assistance in preparing the histological sections. The title of the section “How the worm got its stylet” is coined after the seminal paper by Jondelius et al. 2011: “How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela.”

Funding

This study was funded by X (grant number X).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable.

Supplementary material

12526_2018_890_MOESM1_ESM.doc (288 kb)
ESM 1 (DOC 288 kb)
12526_2018_890_MOESM2_ESM.doc (59 kb)
ESM 2 (DOC 59 kb)

References

  1. Ax P (1959) Zur Systematik, Ökologie und Tiergeographie der Turbellarienfauna in den ponto-kaspischen Brackwassergebieten. Zool Jahrb Abt Syst Oekol Geogr Tiere 87:43–184Google Scholar
  2. Ax P, Ax R (1977) Interstitielle Fauna von Galapagos. Mikrofauna Meeresbodens 64:397–438Google Scholar
  3. Ax P (2008) Plathelminthes aus Brackgewässern der Nordhalbkugel. Akademie der Wissenschaft und der Literatur Mainz, Franz Steiner Verlag, Stuttgart, p 696Google Scholar
  4. Bianchi CN, Morri C, Chiantore M, Montefalcone M, Parravicini V, Rovere A (2012) Mediterranean Sea biodiversity between the legacy from the past and a future of change. In: Life in the Mediterranean Sea: a look at habitat changes. Noga Stambler Editor, Nova Science Publishers New York, pp 1–55Google Scholar
  5. Brown SDJ, Collins RA, Boyer S, Lefort M-C, Malumbres-Olarte J, Vink CJ, Cruickshank RH (2012) Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour 12:562–565CrossRefGoogle Scholar
  6. Cannon LRG (1986) Turbellaria of the world. A Guide to Families & Genera. Queensland Museum, South Brisbane, Australia, p 136Google Scholar
  7. Casu M, Cossu P, Sanna D, Lai T, Scarpa F, Curini-Galletti M (2011) A reappraisal of the monophyly of the genus Pseudomonocelis Meixner, 1943 (Platyhelminthes: Proseriata), with the description of a new species from the Mediterranean. Zootaxa 3011:59–68CrossRefGoogle Scholar
  8. Casu M, Cossu P, Lai T, Scarpa F, Sanna D, Dedola GL, Curini-Galletti M (2012) First evidence of self-fertilization in a marine microturbellarian (Platyhelminthes). J Exp Mar Biol Ecol 428:32–38CrossRefGoogle Scholar
  9. Casu M, Scarpa F, Delogu V, Cossu P, Lai T, Sanna D, Curini-Galletti M (2014) Biodiversity patterns in interstitial marine microturbellaria: a case study within the genus Parotoplana (Platyhelminthes: Rhabditophora) with the description of four new species. J Zool Syst Evol Res 52:190–202CrossRefGoogle Scholar
  10. Curini-Galletti M, Martens PM (1990) Karyological and ecological evolution of the Monocelididae (Platyhelminthes, Proseriata). Mar Ecol 11:255–261CrossRefGoogle Scholar
  11. Curini-Galletti M, Martens PM (1995) Archilina israelitica n. sp. (Platyhelminthes Proseriata) from the eastern Mediterranean. Bollettino di Zoologia 62:267–271CrossRefGoogle Scholar
  12. Curini-Galletti M, Martens PM (1996) New species of Archilina Ax 1959 (Platyhelminthes Proseriata) from the Red Sea and the Caribbean. Trop Zool 9:187–199CrossRefGoogle Scholar
  13. Curini-Galletti M (2001) The Proseriata. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor and Francis, London, pp 41–48Google Scholar
  14. Curini-Galletti M, Webster BL, Huyse T, Casu M, Schockaert ER, Artois TJ, Littlewood DTJ (2010) New insights on the phylogenetic relationships of the Proseriata (Platyhelminthes), with proposal of a new genus of the family Coelogynoporidae. Zootaxa 2537:1–18CrossRefGoogle Scholar
  15. Curini-Galletti M (2014) Contribution to the knowledge of the Proseriata (Platyhelminthes: Rhabditophora) from southeast Brazil. Mar Biodivers 44:287–312CrossRefGoogle Scholar
  16. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefGoogle Scholar
  17. Delogu V, Curini-Galletti M (2009) The Parotoplana jondelii species-group (Platyhelminthes Proseriata): a microturbellarian radiation in the Mediterranean. Contrib Zool 78(3):99–112CrossRefGoogle Scholar
  18. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:e214CrossRefGoogle Scholar
  19. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472CrossRefGoogle Scholar
  20. Girstmair J, Schnegg R, Telford MJ, Egger B (2014) Cellular dynamics during regeneration of the flatworm Monocelis sp (Proseriata, Platyhelminthes). EvoDevo 5:37CrossRefGoogle Scholar
  21. Janssen T, Vizoso DB, Schulte G, Littlewood DTJ, Waeschenbach A, Schärer L (2015) The first multi-gene phylogeny of the Macrostomorpha sheds light on the evolution of sexual and asexual reproduction in basal Platyhelminthes. Mol Phylogenet Evol 92:82–107CrossRefGoogle Scholar
  22. Jondelius U, Wallberg A, Hooge M, Raikova OI (2011) How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. Syst Biol 60:845–871CrossRefGoogle Scholar
  23. Jörger KM, Schrödl M (2013) How to describe a cryptic species? Practical challenges of molecular taxonomy. Front Zool 10:59CrossRefGoogle Scholar
  24. Karling TG (1966) Marine turbellaria from the Pacific coast of North America 4. Coelogynoporidae and Monocelididae. Arkiv för Zoologi 18:493–528Google Scholar
  25. Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780CrossRefGoogle Scholar
  26. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  27. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925CrossRefGoogle Scholar
  28. Littlewood DTJ, Curini-Galletti M, Herniou EA (2000) The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol Phylogenet Evol 16:449–466CrossRefGoogle Scholar
  29. Littlewood DTJ, Olson PD (2001) Small subunit rDNA and the Platyhelminthes: signal, noise, conflict and compromise. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor and Francis Inc, New York, pp 262–278Google Scholar
  30. Litvaitis MK, Curini-Galletti M, Martens PM, Kocher TD (1996) A reappraisal of the systematics of the Monocelididae (Platyhelminthes, Proseriata): inferences from rDNA sequences. Mol Phylogenet Evol 6:150–156CrossRefGoogle Scholar
  31. Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis. Version 3.31 http://mesquiteproject.org
  32. Martens PM (1983) Three new species of Minoninae (Turbellaria, Proseriata, Monocelididae) from the North Sea, with remarks on the taxonomy of the subfamily. Zool Scr 12:153–160CrossRefGoogle Scholar
  33. Martens PM, Curini-Galletti MC (1989) Monocelididae and Archimonocelididae (Platyhelminthes Proseriata) from South Sulawesi (Indonesia) and Northern Australia with biogeographical remarks. Trop Zool 2(2):175–206CrossRefGoogle Scholar
  34. Martens PM, Curini-Galletti M (1993) Taxonomy and phylogeny of the Archimonocelididae Meixner, 1938. Bijdragen tot de Dierkunde 63(2):65–102CrossRefGoogle Scholar
  35. Martens PM, Curini-Galletti M (1994) Revision of the Archiloa genus complex, with description of seven new Archilina species from the Mediterranean (Proseriata, Platyhelminthes). Bijdragen tot de Dierkunde 64:129–150CrossRefGoogle Scholar
  36. Martens PM, Curini-Galletti M (1999) Revision of Promonotus Beklemischev, 1927 (Platyhelminthes: Proseriata), with description of two new species from the Mediterranean. Hydrobiologia 412:131–142CrossRefGoogle Scholar
  37. Michiels NK, Newman LJ (1998) Sex and violence in hermaphrodites. Nature 391:647CrossRefGoogle Scholar
  38. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computering Environments Workshop (GCE), New OrleansGoogle Scholar
  39. Noreña C, Damborenea C, Faubel A, Brusa F (2007) Composition of meiobenthonic Platyhelminthes from brackish environments of the Galician and Cantabrian coasts of Spain with the description of a new species of Djeziraia (Polycystididae, Kalyptorhynchia). J Nat Hist 41:1989–2005CrossRefGoogle Scholar
  40. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 801: 877–884.CrossRefGoogle Scholar
  41. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609CrossRefGoogle Scholar
  42. Puillandre N, Lambert A, Briìouillet S, Achaz G (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Biol 21:1864–1877Google Scholar
  43. Rolán E (Coord.) (2011) Moluscos y conchas marinas de Canarias. Conchbooks, Hackenheim & Emilio Rolán, Vigo, 716 ppGoogle Scholar
  44. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  45. Scarpa F, Cossu P, Sanna D, Lai T, Norenburg JL, Curini-Galletti M, Casu M (2015) An 18S and 28S-based clock calibration for marine Proseriata (Platyhelminthes). J Exp Mar Biol Ecol 463:22–31CrossRefGoogle Scholar
  46. Scarpa F, Cossu P, Lai T, Sanna D, Curini-Galletti M, Casu M (2016a) Meiofaunal cryptic species challenge species delimitation: the case of the Monocelis lineata (Platyhelminthes: Proseriata) species complex. Contrib Zool 85:121–143CrossRefGoogle Scholar
  47. Scarpa F, Sanna D, Lai T, Cossu P, Curini-Galletti M, Casu M (2016b) New set of nuclear primers for the ribosomal regions in Proseriata (Platyhelminthes). Conservation Genet Resour 8:411–413CrossRefGoogle Scholar
  48. Scarpa F, Cossu P, Delogu V, Lai T, Sanna D, Leasi F, Norenburg JL, Curini-Galletti M, Casu M (2017a) Molecular support for morphology-based family-rank taxa: the contrasting cases of two families of Proseriata (Platyhelminthes). Zool Scr.  https://doi.org/10.1111/zsc.12251
  49. Scarpa F, Sanna D, Cossu P, Lai T, Curini-Galletti M, Casu M (2017b) A molecular approach to the reconstruction of the pre-Lessepsian fauna of the Isthmus of Suez: the case of the interstitial flatworm Monocelis lineata sensu lato (Platyhelminthes: Proseriata). J Exp Mar Biol Ecol DOI.  https://doi.org/10.1016/j.jembe.2017.08.011
  50. Scarpa F, Cossu P, Sanna D, Lai T, Casu M, Curini-Galletti M (2017c) New insights on the genus Otoplana Du Plessis, 1889 (Platyhelminthes: Proseriata), with description of two new species from the Canary Islands. Mar Biodivers DOI.  https://doi.org/10.1007/s12526-017-0785-1
  51. Schluter D, Price T, Mooers AØ, Ludwig D (1997) Likelihood of ancestor states in adaptative radiation. Evolution 51(6): 1699–1711.CrossRefGoogle Scholar
  52. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504CrossRefGoogle Scholar
  53. Schmidt HA, von Haeseler A (2012) Phylogenetic inference using maximum likelihood methods. In: Lemey P, Salemi M, Vandamme AM (eds) The phylogenetic handbook, 5th edn. Cambridge University Press, Cambridge, pp 181–209Google Scholar
  54. Schockaert ER (1996) Turbellarians. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Wallingford, pp 211–225Google Scholar
  55. Silvestro D, Michalak I (2012) RAxMLGUI: a graphical frontend for RAxML. Org Divers Evol 12:335–337CrossRefGoogle Scholar
  56. Sopott-Ehlers B, Ax P (1985) Proseriata (Plathelminthes) von der Pazifikkueste der USA (Washington). III. Monocelididae. Microfauna Marina 2:331–345Google Scholar
  57. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coast and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  58. Strimmer K, von Haeseler A (1996) Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies. Mol Biol Evol 13 (7):964–969.CrossRefGoogle Scholar
  59. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology—DNA sequence analysis. American Mathematical Society, Providence, pp 57–86Google Scholar
  60. Van den Bogaard P (2013) The origin of the Canary Island Seamount Province—new ages of old seamounts. Sci Rep 3:2107CrossRefGoogle Scholar
  61. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Medicina VeterinariaUniversità degli Studi di SassariSassariItaly
  2. 2.Dipartimento di Scienze Biomediche, Università degli Studi di SassariSassariItaly

Personalised recommendations