Advertisement

Marine Biodiversity

, Volume 49, Issue 2, pp 923–931 | Cite as

Genetic structure of intertidal shimofuri goby in the Zhejiang Coastal Sea, China: implications for management

  • Evelyn Mokgadi Raphalo
  • Cuiping Gu
  • Zhenming Lü
  • Yongjiu ChenEmail author
Original Paper

Abstract

The shimofuri gobies Tridentiger bifasciatus (Gobiidae: Gobionellinae), are small, benthic fish indigenous to the coastal waters of the West Pacific Ocean. In this study, 582-bp mitochondrial cytochrome C subunit I (COI) and 789-bp nuclear ryanodine receptor 3 (Ryr3) DNA sequence data were employed to evaluate population genetic structure of T. bifasciatus. A total of 14 distinct COI haplotypes and 14 distinct Ryr3 alleles were recovered for 140 samples collected from eight intertidal localities in the Zhejiang Coastal Sea, China. The indices of haplotype and nucleotide diversity within populations are 0.42–0.87 (Hd) and 0.13–0.54% (π) for COI and 0.26–0.59 (Hd) and 0.05–0.09% (π) for Ryr3. FST distances between population pairs are − 0.007–0.768 (COI) and − 0.030–0.311 (Ryr3). The south population of Cangnan exhibits significant divergence from all the north populations (p < 0.01). The median-joining (MJ) network indicates that one COI haplotype and one Ryr3 allele found in Cangnan are absent in all the north populations. This observation of phylogeographic break can be interpreted: (1) the dispersal of T. bifasciatus is driven more by small-scale local currents, including inflows of local rivers than by large-scale oceanographic currents; (2) the recruitment is frequently shared among the geographically proximate populations in the northern areas of Zhejiang Coastal Sea, whereas infrequently shared between Cangnan and geographically distant north populations. Tajima’s D statistics, star-like pattern observed on the MJ network, and mismatch distribution analysis present compelling evidence for pronounced demographic fluctuations for the overall population of T. bifasciatus, and infer that the species along the Zhejiang Coastal Sea has undergone a sudden expansion following bottleneck in the past, probably during the quaternary glaciations. The central components for management efforts should occur with preserving ecological diversity and integrity, especially in areas with strong rates of economic growth and high degrees of artificial disturbance, as well as acknowledging separate management units for Cangnan and the other north populations of T. bifasciatus in the Coastal Sea.

Keywords

Tridentiger bifasciatus Zhejiang Coastal Sea COI Ryr3 Genetic variation Population structure Management unit 

Notes

Acknowledgments

We thank Zetan Xu, Anqi Yan, Jamel T. James, and Yifan Wang (Zhejiang Ocean University) for their assistance in sampling and laboratory work. We also thank Michael Reuscher (Texas A&M University – Corpus Christi) and anonymous reviewers for their critical and insightful comments on the manuscript.

Funding information

The study was funded by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of P.R. China (2014 to Yongjiu Chen) and the Start-Up Research Foundation of Zhejiang Ocean University (2011 to Yongjiu Chen).

References

  1. Abdel-Mawgood AL (2012) DNA based techniques for studying genetic diversity. In: Caliskan M (ed) Genetic diversity in microorganisms, InTech, Rijeka, Croatia, pp 95–122Google Scholar
  2. Agorreta A, San Mauro D, Schliewen U, Van Tassell JL, Kovačić M, Zardoya R, Rüber L (2013) Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol Phylogenet Evol 69(3):619–633CrossRefGoogle Scholar
  3. Akihito, Sakamoto K (1989) Reexamination of the status of the striped goby. Jpn J Ichthyol 36(1):100–112Google Scholar
  4. Ardestani G, Rogelio DR, Reyes RC, Laude RP (2014) Genetic diversity of two Philippine native freshwater goby species (Perciformes: Gobiidae): implications for conservation. Aquat Conserv Mar Freshwat Ecosyst 24(5):592–600CrossRefGoogle Scholar
  5. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefGoogle Scholar
  6. Bickham JW, Sandhu S, Hebert PD, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat Res Rev Mutat Res 463(1):33–51CrossRefGoogle Scholar
  7. Boseto DT, Furiness Magnuson SJ, Pezold FL (2016) Population genetic structure of the goby Stiphodon rutilaureus (Gobiidae) in the New Georgia Group, Solomon Islands. Pac Conserv Biol 22:281–291CrossRefGoogle Scholar
  8. Chabarria R, Furiness S, Patterson P, Hall J, Chen Y, Lynch B, Pezold F (2014) Genetic structure and demographic history of endemic Micronesian blue riffle goby, Stiphodon caeruleus (Gobiidae) inferred from mitochondrial DNA sequence analysis. Copeia 1:23–37CrossRefGoogle Scholar
  9. Cui R, Pan Y, Yang X, Wang Y (2013) A new barbeled goby from south China (Teleostei: Gobiidae). Zootaxa 3670:177–192CrossRefGoogle Scholar
  10. Daniels SR, Stewart BA, Cook PA (2002) Congruent patterns of genetic variation in a burrowing freshwater crab revealed by allozymes and mt DNA sequence analysis. Hydrobiologia 468:171–179CrossRefGoogle Scholar
  11. Dong YW, Wang HS, Han GD, Ke CH, Zhan X, Nakano T, Williams GA (2012) The impact of Yangtze River discharge, ocean currents and historical events on the biogeographic pattern of Cellana toreuma along the China coast. PLoS One 7(4):e36178CrossRefGoogle Scholar
  12. Drost E, Golla TR, von der Heyden S, Teske PR (2016) No divergent evolution, despite restricted connectivity, between Atlantic and Indian Ocean goby populations. Mar Biodivers 46(2):465–471CrossRefGoogle Scholar
  13. Ellingson RA, Swift CC, Lloyd T, Findley LT, Jacobs DK (2014) Convergent evolution of ecomorphological adaptations in geographically isolated bay gobies (Teleostei: Gobionellidae) of the temperate North Pacific. Mol Phylogenet Evol 70:464–477CrossRefGoogle Scholar
  14. Estes-Zumpf WA, Rachlow JL, Waits LP, Warheit KI (2010) Dispersal, gene flow, and population genetic structure in the pygmy rabbit (Brachylagus idahoensis). J Mammal 91(1):208–219CrossRefGoogle Scholar
  15. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  16. Frankham R, Ballow JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Franklin IR (1980) Evolutionary change in small populations. In: Soule ME, Wilcox BA (eds) Conservation biology, an evolutionary-ecology perspective. Sinauer Associates, Sunderland, pp 135–149Google Scholar
  18. Gill A, Mooi R (2012) Thalasseleotrididae, new family of marine gobioid fishes from New Zealand and temperate Australia, with a revised definition of its sister taxon, the Gobiidae (Teleostei: Acanthomorpha). Zootaxa 3266:41–52Google Scholar
  19. Grant WAS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89(5):415–426CrossRefGoogle Scholar
  20. He Q, Bertness MD, Bruno JF, Li B, Chen G, Coverdale TC, Altieri AH, Bai J, Sun T, Pennings SC, Liu J (2014) Economic development and coastal ecosystem change in China. Sci Rep 4:5995Google Scholar
  21. Horn MH, Martin KLM, Chotkowski MA (1999) Intertidal fishes: life in two worlds. Academic Press, San DiegoGoogle Scholar
  22. Inui R, Onikura N, Kawagishi M, Nakatani M, Tomiyama Y, Oikawa S (2010) Selection of spawning habitat by several gobiid fishes in the subtidal zone of a small temperate estuary. Fish Sci 76:83–91CrossRefGoogle Scholar
  23. Jeon HB, Choi SH, Suk HY (2012) Exploring the utility of partial cytochrome c oxidase subunit 1 for DNA barcoding of gobies. Anim Syst Evol Divers 28:269–278CrossRefGoogle Scholar
  24. Jin X, Wang R, Wei T, Tang D, Xu T (2015) Complete mitochondrial genome sequence of Tridentiger bifasciatus and Tridentiger barbatus (Perciformes, Gobiidae): a mitogenomic perspective on the phylogenetic relationships of Gobiidae. Mol Biol Rep 42(1):253–265CrossRefGoogle Scholar
  25. Keith P, Lord C (2011) Systematics of Sicydiinae. In: Patzner RA, Van Tassel JL, Kovacic M, Kapoor B (eds) The biology of gobies. Science Publishers, Enfield, pp 119–128CrossRefGoogle Scholar
  26. Li NS, Zhao SL, Wasiliev B (2000) Geology of marginal sea in the Northwest Pacific. Heilongjiang Education Press, Harbin (in Chinese)Google Scholar
  27. Li C, Ortí G, Zhang G, Lu G (2007a) A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol Biol 7:44CrossRefGoogle Scholar
  28. Li SF, Cheng JH, Yan LP (2007b) Spatial structure of fish communities on the continental shelf of the East China Sea. Acta Ecol Sinica 27:4377–4386 (in Chinese)Google Scholar
  29. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  30. Liu JY (2008) Checklist of marine biota of China seas. Science Press of China, Beijing (in Chinese)Google Scholar
  31. Lord C, Maeda K, Keith P, Watanabe S (2015) Population structure of the Asian amphidromous Sicydiinae goby, Stiphodon percnopterygionus with comments on larval dispersal in the northwest Pacific Ocean. Vie Et Milieu-Life And. Environment 65(2):63–71Google Scholar
  32. Matern SA, Brown LR (2005) Invaders eating invaders: exploitation of novel alien prey by the alien shimofuri goby in the San Francisco Estuary, California. Biol Invasions 7:497–507CrossRefGoogle Scholar
  33. Matern SA, Fleming KJ (1995) Invasion of a third Asian goby, Tridentiger bifasciatus, into California. Calif Fish Game 81:71–76Google Scholar
  34. Mukai T, Sato T, Naruse K, Inaba K, Shima A, Morisawa M (1996) Genetic relationships of the genus Tridentiger (Pisces, Gobiidae) based on allozyme polymorphism. Zool Sci 13:175–183CrossRefGoogle Scholar
  35. Mukai T, Naruse K, Sato T, Shima A, Morisawa M (1997) Multiregional introgressions inferred from the mitochondrial DNA phylogeny of a hybrid species complex of Gobiid fishes, genus Tridentiger. Mol Biol Evol 14:1258–1265CrossRefGoogle Scholar
  36. Murdy E (2011a) Systematics of Oxudercinae. In: Patzner RA, Van Tassel JL, Kovacic M, Kapoor B (eds) The biology of gobies. Science Publishers, Enfield, pp 99–106CrossRefGoogle Scholar
  37. Murdy E (2011b) Systematics of Amblyopinae. In: Patzner RA, Van Tassel JL, Kovacic M, Kapoor B (eds) The biology of gobies. Science Publishers, Enfield, pp 107–118CrossRefGoogle Scholar
  38. Pezold F (2011) Systematics of the family Gobionellinae. In: Patzner RA, Van Tassel JL, Kovacic M, Kapoor B (eds) The biology of gobies. Science Publishers, Enfield, pp 87–98CrossRefGoogle Scholar
  39. Polzin T, Daneschmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31:12–20CrossRefGoogle Scholar
  40. Qiu F, Li H, Lin H, Ding S, Miyamoto MM (2016) Phylogeography of the inshore fish, Bostrychus sinensis, along the Pacific coastline of China. Mol Phylogenet Evol 96:112–117CrossRefGoogle Scholar
  41. Rašić G, Schama R, Powell R, Maciel-de Freitas R, Endersby-Harshman NM, Filipović I, Sylvestre G, Máspero RC, Hoffmann AA (2015) Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control. Evol Appl 8(9):901–915CrossRefGoogle Scholar
  42. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  43. Tews J, Brose U, Grimm V, Tielborger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92CrossRefGoogle Scholar
  44. Thacker CE (2011) Systematics of Gobiidae. In: Patzner RA, Van Tassel JL, Kovacic M, Kapoor B (eds) The biology of gobies. Science Publishers, Enfield, pp 129–138CrossRefGoogle Scholar
  45. Tornabene L, Baldwin C, Weigt LA, Pezold F (2010) Exploring the diversity of western Atlantic Bathygobius (Teleostei: Gobiidae) with cytochrome c oxidase I, with descriptions of two new species. Aqua Int J Ichthyol 16:4–15Google Scholar
  46. Tornabene L, Chen Y, Pezold F (2013) Gobies are deeply divided: phylogenetic evidence from nuclear DNA (Teleostei: Gobioidei: Gobiidae). Syst Biodivers 11(3):345–361CrossRefGoogle Scholar
  47. Walter RP, Hogan JD, Blum MJ, Gagne RB, Hain EF, Gilliam JF, McIntyre PB (2012) Climate change and conservation of endemic amphidromous fishes in Hawaiian streams. Endanger Species Res 16(3):261–272CrossRefGoogle Scholar
  48. Wang CX, Li YY, Xu SQ (2010) Biological monitoring and its application in environmental monitoring. Asian J Ecotoxicol 5:628–638Google Scholar
  49. Waples RS (1991) Definition of ‘species’ under the endangered species act: application to Pacific Salmon. U. S. Department of Commerce. NOAA Technical Memorandum NMFS F/NWC-194. http://www.nwfsc.noaa.gov/publications/scipubs/techmemos/tm194
  50. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia's fish species. Philos Trans R Soc Lond Ser B Biol Sci 360:1847–1857CrossRefGoogle Scholar
  51. Wu HL, Zhong JS (2008) Chinese fauna Osteichthyes Perciformes (vol. V) Gobioidei. Chinese Science Press, Beijing (in Chinese)Google Scholar
  52. Wu R, Liu S, Zhuang Z, Su Y, Tang Q (2012) Population genetic structure and demographic history of small yellow croaker, Larimichthys polyactis (Bleeker, 1877), from coastal waters of China. Afr J Biotechnol 11(61):12500–12509Google Scholar
  53. Xie T, Hu YF, Guo PJ (2009) Influence of reclamation land project from marshes on marine environment and countermeasures of protection in Zhoushan. Mar Environ Sci 28:105–108Google Scholar
  54. Yamada T, Sugiyama T, Tamaki N, Kawakita A, Kato M (2009) Adaptive radiation of gobies in the interstitial habitats of gravel beaches accompanied by body elongation and excessive vertebral segmentation. BMC Evol Biol 9:145CrossRefGoogle Scholar
  55. Yang XZ, Lu L, Zhang GS, Lu S, Xuan GF (2004) Study on spatial structure of tourism resources in Zhoushan Archipelago. Geogr Geogr Inf Sci 5:87–91Google Scholar
  56. Zhao SL, Zhong JS (2005) Revision on the list of fishes in the Zhoushan sea area. J Zhejiang Ocean Univ Nat Sci 24:364–379 (in Chinese)Google Scholar
  57. Zhao SL, Xu HX, Zhong JS, Chen J (2016) The records of Zhejiang marine fishes. Zhejiang Scienceand Technology Press, Hangzhou (in Chinese)Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Evelyn Mokgadi Raphalo
    • 1
    • 2
  • Cuiping Gu
    • 1
  • Zhenming Lü
    • 1
  • Yongjiu Chen
    • 1
    Email author
  1. 1.College of Marine Science & TechnologyZhejiang Ocean UniversityZhoushanPeople’s Republic of China
  2. 2.Department of Ichthyology & Fisheries ScienceRhodes UniversityGrahamstownSouth Africa

Personalised recommendations