Spatiotemporal Variability of Soil Organic Carbon Content Over India Based on an Ecosystem Model and Regional Databases

  • R. K. NayakEmail author
  • A. Bhuvanachandra
  • M. Krishnapriya
  • M. Swapna
  • N. R. Patel
  • A. Tommar
  • M. V. R. Seshasai
  • V. K. Dadhwal
Research Article


A study on spatiotemporal variability of soil organic carbon content (SOC) over India is carried out based on a remote sensing data-driven terrestrial ecosystem model and the regional databases. The model is initialized with the equilibrated solutions corresponding to undisturbed balanced biosphere condition and then marched forward with realistic forcing for the recent decades. Both the model solution and regional data show a good agreement between them with a large SOC values with mean 12 kg m−2 for the forest and cropland-dominated regions, a moderate value (8 kg m−2) for the mixed shrub and grassland, and small for the grassland regions (4 kg m−2) correspondingly for 30 m upper active layer of the soil. The model SOC shows a significant seasonal variability across all the vegetation types with peak value during spring season (March–April) and trough during the autumn (September–October). The SOC budget of the country is around 13 Pg for the top active layer of the soil. It has shown a significant increasing trend of 22 Tg year−1 for the study period resulted from the positive growth rate of 25 Tg year−1 for the cropland and negative growth rate of 3 Tg year−1 for the forest region. The extrapolated annual national SOC budget is 25 Pg correspondingly for 1 m depth soil layer.


Net ecosystem productivity Net primary productivity Carbon cycle NDVI CASA India 



This work is carried out under National Carbon Project (NCP) of ISRO Biosphere and Biosphere Program (ISRO-GBP). We sincerely thank Director NRSC for his encouragement and support. We thank MODIS teams at NASA for making available NDVI data at the public domains for use in this study.


  1. Agarwal, S., Joshi, P. K., Shukla, Y., & Roy, P. S. (2003). Spot vegetation multi temporal data for classifying vegetation in south central Asia. Current Science,84(11), 1440–1448.Google Scholar
  2. Batjes, N. H. (1998). Mitigation of atmospheric CO2 concentrations by increasedcarbonsequestration in the soil. Biology and Fertility of Soils,27, 230–235.CrossRefGoogle Scholar
  3. Bhattacharyya, T., Pal, D. K., Mandal, C., & Velayutham, M. (2000). Organic carbon stock in Indian soils and their geographical distribution. Current Science,79(5), 655–660.Google Scholar
  4. Bhuvanachandra, A., Krishnapriya, M., Nayak, R. K., & Dadhwal, V. K. (2016). Spatio-temporal variability of atmospheric CO2 over India and its surroundings based on satellite measurements and numerical modeling. In Proc. SPIE 9876, remote sensing of the atmosphere, clouds, and precipitation VI, 98761K.
  5. Choudhury, B. U., Mohapatra, K. P., Das, A., Das, P. T., Nongkhlaw, L., Fiyaz, R. A., et al. (2013). Spatial variability in distribution of organic carbon stocks in the soils of North East India. Current Science,104(5), 604–614.Google Scholar
  6. Gupta, R. K., & Rao, D. L. (1994). Potential of wastelands for sequestering carbon by reforestation. Current Science,66, 378–380.Google Scholar
  7. Jenny, H. (1941). Factors of soil formation (p. 281). New York: McGrawHill.Google Scholar
  8. Jenny, H., & Raychaudhuri, S. P. (1960). Effect of climate and cultivation on nitrogen and organic matter reserves in Indian soils (p. 126). New Delhi: Indian Council of Agricultural Research.Google Scholar
  9. Katyal, V., Gangwar, K. S., & Gangwar, B. (2001). Conservation of organic carbon in relation to crop productivity, yield stability and soil fertility under rice (Oryza sativa)—Wheat (Triticum aestivum) cropping system. Indian Journal of Agronomy,46, 1–4.Google Scholar
  10. Lal, R. (2007). Carbon management in agricultural soils. Mitigation and Adaptation Strategies for Global Change,12, 303–322. Scholar
  11. Nayak, R. K., Mishra, N., Dadhwal, V. K., Patel, N. R., Salim, M., Kao, K. H., et al. (2017). Assessing the consistency between AVHRR and MODIS NDVI data sets for estimating terrestrial net primary productivity over India. Journal of Earth System Science,125, 1189–1204. Scholar
  12. Nayak, R. K., Patel, N. R., & Dadhwal, V. K. (2010). Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model. Environmental Monitoring and Assessment,170(1–4), 195–213. Scholar
  13. Nayak, R. K., Patel, N. R., & Dadhwal, V. K. (2013). Inter-annual variability and climate control of terrestrial of net primary productivity over India. International Journal of Climatology,33(1), 132–142. Scholar
  14. Parton, W. J., McKeown, B., Kirchner, V., & Ojima, D. (1992) CENTURY users manual. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins.Google Scholar
  15. Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal,51(5), 1173–1179.CrossRefGoogle Scholar
  16. Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and landuse change: Processes and potential. Global Change Biology,6, 317–327. Scholar
  17. Post, W. M., Pastor, J., Zinke, P. J., & Stangenberger, A. G. (1985). Global patterns of soil nitrogen storage. Nature,317, 613–616.CrossRefGoogle Scholar
  18. Potter, C., Klooster, S., Myneni, R., Genovese, V., Tan, P., & Kumar, V. (2003). Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–98. Global and Planetary Change,39, 201–213.CrossRefGoogle Scholar
  19. Potter, C., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., et al. (1993). Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles,7, 811–841.CrossRefGoogle Scholar
  20. Reynolds, C. A., Jackson, T. J., & Rawls, W. J. (2000). Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resources Res,36, 3653–3662.CrossRefGoogle Scholar
  21. Schiedung, H., Bornemann, L., & Welp, G. (2017). Seasonal variability of soil organic carbon fractions under arable land. Pedosphere,27(2), 380–386.CrossRefGoogle Scholar
  22. Shao, X., Yang, W., & Wu, M. (2015). Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in Hangzhou Bay tidal flat wetland. PLoS ONE,10(11), e0142677. Scholar
  23. Sreenivas, K., Dadhwal, V. K., Kumar, S., Harsha, G. S., Mitran, T., Sujatha, G., et al. (2016). Digital organic and inorganic carbon status in India. Geoderma, 269, 160–173.CrossRefGoogle Scholar
  24. Stewart, W. (2014). Seasonal variation in soil organic carbon. Soil Science Society of America Journal,78, 1442–1447. Scholar
  25. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., et al. (2007). Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems & Environment, 118(1–4), 6–28.CrossRefGoogle Scholar
  26. Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science,33(2), 141–163.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2020

Authors and Affiliations

  • R. K. Nayak
    • 1
    Email author
  • A. Bhuvanachandra
    • 1
  • M. Krishnapriya
    • 1
  • M. Swapna
    • 1
  • N. R. Patel
    • 2
  • A. Tommar
    • 3
  • M. V. R. Seshasai
    • 1
  • V. K. Dadhwal
    • 4
  1. 1.National Remote Sensing Center (NRSC)ISROBalanagar, HyderabadIndia
  2. 2.Indian Institute of Remote Sensing (IIRS)ISRODehradunIndia
  3. 3.Punjab Remote Sensing CenterLudhianaIndia
  4. 4.Indian Institute of Space Science and TechnologyThiruvananthapuramIndia

Personalised recommendations