Advertisement

Evaluation of Deep Learning CNN Model for Land Use Land Cover Classification and Crop Identification Using Hyperspectral Remote Sensing Images

  • Kavita BhosleEmail author
  • Vijaya Musande
Research Article
  • 14 Downloads

Abstract

Deep learning convolutional neural network (CNN) is popular as being widely used for classification of unstructured data. Land use land cover (LULC) classification using remote sensing data can be used for crop identification also. Present study aims to examine the use of deep learning CNN for LULC classification on Indian Pines dataset and for crop identification on our study area dataset. In the present work, AVIRIS sensor’s Indian Pines standard dataset has been used for LULC classification. Study area from Phulambri, Aurangabad, MH, India, has been used for crop classification. Data have been gathered from EO-1 Hyperion sensor. The accuracy of CNN model depends on optimizer, activation function, filter size, learning rate and batch size. Deep learning CNN is evaluated by changing these parameters. It has been observed that deep learning CNN using optimized combination of parameters has provided 97.58% accuracy for the Indian Pines dataset, while 79.43% accuracy for our study area dataset. The empirical results demonstrate that CNN works well in practice for unstructured data as well as for small size dataset.

Keywords

Remote sensing data Convolutional neural network (CNN) Principal component analysis (PCA) Hyperspectral data Deep learning Land use land cover (LULC) 

Notes

References

  1. Baumgardner, M. F., Biehl, L. L., & Landgrebe, D. A. (2015). 220 band AVIRIS hyperspectral image data set: June 12, 1992 indian pine test site 3. Purdue University Research Repository.  https://doi.org/10.4231/r7rx991c.Google Scholar
  2. Becherer, N., Pecarina, J., Nykl, S., & Hopkinson, K. (2017). Improving optimization of convolutional neural networks through parameter fine-tuning. Neural Computing and Applications.  https://doi.org/10.1007/s00521-017-3285-0.
  3. Bhosle, K., & Musande V. (2017). Stress monitoring of mulberry plants by finding REP using hyperspectral data. In The international archives of the photogrammetry, remote sensing and spatial information sciences (Vol. XLII-1/W1).Google Scholar
  4. Byrnep, G. F., Crapperk, F., & Mayo, K. (1980). Monitoring land-cover change by principal component analysis of multitemporal landsat data. Journal of Remote Sensing of Environment, 10(3), 175–184.  https://doi.org/10.1016/0034-4257(80)90021-8.CrossRefGoogle Scholar
  5. Carr, S. B., Bernstein, L. S., & Adler-Golden, S. M. (2015).The Quick Atmospheric Correction (QUAC) algorithm for hyperspectral image processing: extending QUAC to a coastal scene. In International conference on digital image computing: Techniques and applications (DICTA).  https://doi.org/10.1109/dicta.2015.7371314.
  6. Chen, C., Gong, W., Hu, Y., Chen, Y., & Ding, Y. (2017). Learning oriented region-based convolutional neural networks for building detection in satellite remote sensing images. In The international archives of the photogrammetry, remote sensing and spatial information sciences (Vol. XLII-1/W1).Google Scholar
  7. Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54, 6232–6251.CrossRefGoogle Scholar
  8. Eklundh, L., & Singh, A. (1993). A comparative analysis of standardised and unstandardised principal components analysis in remote sensing. International Journal of Remote Sensing, 14(7), 1359–1370.CrossRefGoogle Scholar
  9. Fauvel, M., hanussot, J., & Benediktsson, J. A. (2009). Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. EURASIP Journal on Advances in Signal Processing Volume.  https://doi.org/10.1155/2009/783194.Google Scholar
  10. Fukushima, K. (1988). Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Networks, 1(2), 119–130.CrossRefGoogle Scholar
  11. Jin, B., Ye, P., Zhang, X., Song, W., & Li, S. (2019). Object-oriented method combined with deep convolutional neural networks for land-use-type classification of remote sensing images. Journal of the Indian Society of Remote Sensing.  https://doi.org/10.1007/s12524-019-00945-3.Google Scholar
  12. Kulkarni, A. D. (1998). Neural-fuzzy models for multispectral image analysis. Applied Intelligence, 8(2), 173–187.CrossRefGoogle Scholar
  13. Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters.  https://doi.org/10.1109/lgrs.2017.2681128.Google Scholar
  14. Li, W., Wu, G., Zhang, F., & Du, Q. (2017a). Hyperspectral image classification using deep pixel-pair features. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 844–853.  https://doi.org/10.1109/tgrs.2016.2616355.CrossRefGoogle Scholar
  15. Li, Y., Zhang, H., & Shen, Q. (2017b). Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sensing., 9, 67.  https://doi.org/10.3390/rs9010067.CrossRefGoogle Scholar
  16. Lin, W., Liao, X., Deng, J., & Liu, Y. (2017). Land cover classification of RADARSAT-2 SAR data using convolutional neural network. Journal of Natural Sciences, 21, 151–158.Google Scholar
  17. Musande, V., Anil Kumar, P. S., & Roy, K. K. (2015). Evaluation of fuzzy-based classifiers for cotton crop identification. Geocarto International, 28(3), 243–257.CrossRefGoogle Scholar
  18. Musande, V., Kumar, A., & Kale, K. (2012a). Cotton crop discrimination using fuzzy classification approach. Journal of the Indian Society of Remote Sensing, 40(4), 589–597.CrossRefGoogle Scholar
  19. Musande, V., Kumar, A., Kale, K. & Roy, P. S. (2012b). Temporal indices data for specific crop discrimination using fuzzy based noise classifier. In International archives of the photogrammetry, remote sensing and spatial information sciences (Vol. XXXIX-B8, XXII). ISPRS Congress, Melbourne, Australia, 25 August–01 September 2012.Google Scholar
  20. Pan, X., & Zhao, J. (2017). A central-point-enhanced convolutional neural network for high-resolution remote-sensing image classification. International Journal of Remote Sensing, 38, 6554–6581.CrossRefGoogle Scholar
  21. Tian, T., Gao, L., Song, W., Choo, K.-K. R., & He, J. (2017). Feature extraction and classification of VHR images with attribute profiles and convolutional neural networks. Multimedia Tools and Applications..  https://doi.org/10.1007/s11042-017-5331-4.Google Scholar
  22. Yang, C., Rottensteiner, F., & Heipke, C. (2018). Classification of land cover and land use based on convolutional neural network. In ISPRS annals of the photogrammetry, remote sensing and spatial information sciences (Vol. IV-3).Google Scholar
  23. Yu, X., & Dong, H. (2018). PTL-CFS based deep convolutional neural network model for remote sensing classification. Computing.  https://doi.org/10.1007/s00607-018-0609-6.Google Scholar
  24. Yu, S., Jia, S., & Xu, C. (2017). Convolutional neural networks for hyperspectral image classification. Elsevier Neurocomputing, 2, 1988–1998.  https://doi.org/10.1016/j.neucom.2016.09.010.Google Scholar
  25. Yue, Q., & Ma, C. (2016). Deep learning for hyperspectral data classification through exponential momentum deep convolution neural networks. Journal of Sensors.  https://doi.org/10.1155/2016/3150632.Google Scholar
  26. Yue, Q., & Ma, C. (2018). Hyperspectral data classification based on flexible momentum deep convolution neural network. Multimedia Tools and Applications, 77, 4417–4429.  https://doi.org/10.1007/s11042-017-4734-6.CrossRefGoogle Scholar
  27. Zhang, L., Zhang, L., & Du, B. (2016). Deep learning for remote sensing data a technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4, 22–40.CrossRefGoogle Scholar
  28. Zhao, W., & Du, S. (2016). Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4544–4554.  https://doi.org/10.1109/tgrs.2016.2543748.CrossRefGoogle Scholar
  29. Zhao, W., Guo, Z., Yue, J., Zhang, X., & Luo, L. (2015). On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Journal of Remote Sensing, 36(13), 3368–3379.  https://doi.org/10.1080/2150704X.2015.1062157.CrossRefGoogle Scholar
  30. Zheng, D., Jeong, Y.-S., Jeong, M. K., & Kong, S. G. (2012). Multidimensional local spatial autocorrelation measure for integrating spatial and spectral information in hyperspectral image band selection. Springer’s Applied Intelligence, 36(3), 542–552.CrossRefGoogle Scholar
  31. Zhong, Y., Fei, F., & Zhang, L. (2016a). Large patch convolutional neural networks for the scene classification of high spatial resolution imagery. Journal of Applied Remote Sensing, 10(2), 025006.  https://doi.org/10.1117/1.jrs.10.025006.CrossRefGoogle Scholar
  32. Zhong, J., Yang, B., Huang, G., Zhong, F., & Chen, Z. (2016b). Remote sensing image fusion with convolutional neural network. Sensing and Imagin.  https://doi.org/10.1007/s11220-016-0135-6.Google Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  1. 1.Maharashtra Institute of TechnologyAurangabadIndia
  2. 2.MGM’s Jawaharlal Nehru Engineering CollegeAurangabadIndia

Personalised recommendations