Advertisement

Understanding Spatio-temporal Pattern of Grassland Phenology in the western Indian Himalayan State

  • Harshit RajanEmail author
  • C. Jeganathan
Research Article
  • 31 Downloads

Abstract

The present study has analysed grassland phenology: start of greening (SOG), end of greening (EOG) and length of greening (LOG), and their rate of change in the western Himalaya in India (Himachal Pradesh) using MODIS NDVI time series data (2001–2015). These metrics were inspected at different stratification levels: state, elevation, climatic zones and bio-geographic provinces. Delayed SOG was observed over 44.87% (P < 0.1), and delayed EOG over 63.3% (P < 0.1) of grassland grids. LOG was shortened in 24.37% (P < 0.1) and extended in 58.04% (P < 0.1) of the grids. At the state level, when statistically significant pixels (SSP) and all the pixels (AP) are used (given as SSP:AP), SOG is delayed by 20.27:6.28 days year−15, while EOG is delayed by 38.02:14.97 days year−15 and LOG is extended by 35.07:8.70 year−15 days. Extended LOG is observed over the temperate and cold arid regions, and shortened LOG is observed over sub-alpine and alpine regions. Variations in SOG and EOG are not uniform across different climatic and bio-geographic regions. However, in the sub-alpine and alpine zones, SOG and EOG followed elevation gradients, i.e. late SOG with early EOG over higher elevations, and early SOG with late EOG over lower elevations. Our study has revealed an interesting pattern of translational phenology (i.e. late SOG and late EOG) of grasslands which hints towards shifting winter period. Overall, it is observed that variations in timing of snowfall and snow cover extent are the reasons for inter-annual variations in the grassland phenology.

Keywords

Grasslands Phenology Western Himalaya Bio-geographic zones Climatic zones India 

Notes

Supplementary material

12524_2019_976_MOESM1_ESM.docx (143 kb)
Supplementary material 1 (DOCX 143 kb)

References

  1. Ahmad, S., Dar, H. U., Dar, J. A., & Majeedi, Z. M. (2013). Impact of varying disturbances on the structure and composition of grassland vegetation in Anantnag, Kashmir Himalayas. Proceedings of the International Academy of Ecology and Environmental Sciences, 3(3), 219–228.Google Scholar
  2. Babu, P. K. S., Menon, A. R. R., Suraj, M. A., Varghese, A. O., & Kumar, M. P. (1997). High altitude shola and grassland studies using remote sensing. Indian Journal of Forestry, 20(1), 82–88.Google Scholar
  3. Bagchi, S., Gupta, E., Murthy, K., & Singh, N. J. (2017). Assessing the evidence for changes in vegetation phenology in high-altitude Wetlands of Ladakh (2002–2015). In H. H. T. Prins & T. Namgail (Eds.), Bird migration across the himalayas (pp. 205–216). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Bala, G., Joshi, J., Chaturvedi, R. K., Gangamani, H. V., Hashimoto, H., & Nemani, R. (2013). Trends and variability of AVHRR-derived NPP in India. Remote Sensing, 5(2), 810.CrossRefGoogle Scholar
  5. Bhan, S. C., & Singh, M. (2011). Analysis of total precipitation and snowfall pattern over Shimla. Journal of Agrometeorology, 13(2), 141–144.Google Scholar
  6. Bhatt, S. C., & Bhargava, G. K. (Eds.). (2006). Land and people of Indian States and Union Territories: Himachal Pradesh (Land and People of Indian States and Union Territories: In 36 Volumes, Vol. 10). Delhi: Kalpaz Publication.Google Scholar
  7. Biswas, T., Ramsey, R. D., Bissonette, J. A., & Symanzik, J. (2014). Integration of two spectral indices to monitor loss of moist grasslands within the Jaldapara Wildlife Sanctuary, India. International Journal of Remote Sensing, 35(3), 1038–1063.  https://doi.org/10.1080/01431161.2013.875631.CrossRefGoogle Scholar
  8. Chawla, A., Yadav, P. K., Uniyal, S. K., Kumar, A., Vats, S. K., Kumar, S., et al. (2012). Long-term ecological and biodiversity monitoring in the western Himalaya using satellite remote sensing. Current Science (Bangalore), 102(8), 1143–1156.Google Scholar
  9. Chevuturi, A., Dimri, A. P., & Thayyen, R. J. (2016). Climate change over Leh (Ladakh), India. Theoretical and Applied Climatology.  https://doi.org/10.1007/s00704-016-1989-1.Google Scholar
  10. Davis, C. C., Willis, C. G., Primack, R. B., & Miller-Rushing, A. J. (2010). The importance of phylogeny to the study of phenological response to global climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3201–3213.  https://doi.org/10.1098/rstb.2010.0130.CrossRefGoogle Scholar
  11. de Oliveira, J. C., & Epiphanio, J. C. N. (2012). Noise reduction in MODIS NDVI time series data based on spatial-temporal analysis. In 2012 (pp. 2372–2375). IEEE.Google Scholar
  12. Dimri, A. P., & Dash, S. K. (2012). Wintertime climatic trends in the western Himalayas. Climatic Change, 111(3–4), 775–800.CrossRefGoogle Scholar
  13. Diodato, N., Bellocchi, G., & Tartari, G. (2012). How do Himalayan areas respond to global warming? International Journal of Climatology, 32(7), 975–982.CrossRefGoogle Scholar
  14. Dong, S., Chettri, N., & Sharma, E. (2017). Himalayan biodiversity: Trans-boundary conservation institution and governance. In S. Dong, J. Bandyopadhyay, & S. Chaturvedi (Eds.) Environmental sustainability from the Himalayas to the oceans (pp. 127–143). Berlin: Springer.Google Scholar
  15. Fontana, F., Rixen, C., Jonas, T., Aberegg, G., & Wunderle, S. (2008). Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series-a comparison with in situ measurements. Sensors, 8(4), 2833–2853.CrossRefGoogle Scholar
  16. Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U., et al. (2015). Codominant water control on global interannual variability and trends in land surface phenology and greenness. Global Change Biology, 21(9), 3414–3435.  https://doi.org/10.1111/gcb.12950.CrossRefGoogle Scholar
  17. Gatis, N., Anderson, K., Grand-Clement, E., Luscombe, D. J., Hartley, I. P., Smith, D., et al. (2017). Evaluating MODIS vegetation products using digital images for quantifying local peatland CO2 gas fluxes. Remote Sensing in Ecology and Conservation.  https://doi.org/10.1002/rse2.45.Google Scholar
  18. Guan, K., Wood, E. F., Medvigy, D., Kimball, J., Pan, M., Caylor, K. K., et al. (2014). Terrestrial hydrological controls on land surface phenology of African savannas and woodlands: Hydrology controls on African phenology. Journal of Geophysical Research: Biogeosciences, 119(8), 1652–1669.  https://doi.org/10.1002/2013JG002572.Google Scholar
  19. Gutman, G. G. (1991). Vegetation indices from AVHRR: An update and future prospects. Remote Sensing of Environment, 35(2–3), 121–136.CrossRefGoogle Scholar
  20. Hird, J. N., & McDermid, G. J. (2009). Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment, 113(1), 248–258.  https://doi.org/10.1016/j.rse.2008.09.003.CrossRefGoogle Scholar
  21. Hou, X., Gao, S., Niu, Z., & Xu, Z. (2014). Extracting grassland vegetation phenology in North China based on cumulative SPOT-VEGETATION NDVI data. International Journal of Remote Sensing, 35(9), 3316–3330.  https://doi.org/10.1080/01431161.2014.903437.CrossRefGoogle Scholar
  22. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195–213.CrossRefGoogle Scholar
  23. Hwang, T., Song, C., Vose, J. M., & Band, L. E. (2011). Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index. Landscape Ecology, 26(4), 541–556.  https://doi.org/10.1007/s10980-011-9580-8.CrossRefGoogle Scholar
  24. IANS. (2013). Shimla snowfall at eight-year record. http://www.indiatvnews.com/news/india/shimla-snowfall-at-eight-year-record-19752.html. Accessed 28 July 2017.
  25. IMD. (2017). Statement on Climate of India during 2016.Google Scholar
  26. IPCC. (2007). Climate change 2007: Mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental Panel on Climate Change. Cambridge, New York, NY: Cambridge University Press.Google Scholar
  27. Jadhav, R. N., Kimothi, M. M., & Kandya, A. K. (1993). Grassland mapping/monitoring of Banni, Kachchh (Gujarat) using remotely-sensed data. International Journal of Remote Sensing, 14(17), 3093–3103.  https://doi.org/10.1080/01431169308904422.CrossRefGoogle Scholar
  28. Jeganathan, C., Dash, J., & Atkinson, P. M. (2010a). Characterising the spatial pattern of phenology for the tropical vegetation of India using multi-temporal MERIS chlorophyll data. Landscape Ecology, 25(7), 1125–1141.  https://doi.org/10.1007/s10980-010-9490-1.CrossRefGoogle Scholar
  29. Jeganathan, C., Dash, J., & Atkinson, P. M. (2010b). Mapping the phenology of natural vegetation in India using a remote sensing-derived chlorophyll index. International Journal of Remote Sensing, 31(22), 5777–5796.  https://doi.org/10.1080/01431161.2010.512303.CrossRefGoogle Scholar
  30. Jeganathan, C., Dash, J., & Atkinson, P. M. (2014). Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sensing of Environment, 143, 154–170.  https://doi.org/10.1016/j.rse.2013.11.020.CrossRefGoogle Scholar
  31. Kumar, A., Adhikari, B. S., & Rawat, G. S. (2017). Biogeographic delineation of the Indian Trans-Himalaya: Need for revision. Current Science, 113(6), 1032–1033.Google Scholar
  32. Kumar, A., Rawat, G. S., & Adhikari, B. S. (2015). Rangeland vegetation of the Indian trans-himalaya: An ecological review. In G. S. Rawat & B. S. Adhikari (Eds.), Ecology and management of Grassland habitats in India, ENVIS bulletin: Wildlife and protect areas (Vol. 17, pp. 29–41). Dehradun: Wildlife Institute of India.Google Scholar
  33. Kumar, M., Singh, H. S., Pandey, R., Singh, M. P., Ravindranath, N. H., et al. (2018). Assessing vulnerability of forest ecosystem in the Indian Western Himalayan region using trends of net primary productivity. Biodiversity and Conservation.  https://doi.org/10.1007/s10531-018-1663-2.Google Scholar
  34. Lal, J. B., Gulati, A. K., & Bist, M. S. (1991). Satellite mapping of alpine pastures in the Himalayas. International Journal of Remote Sensing, 12(3), 435–443.  https://doi.org/10.1080/01431169108929664.CrossRefGoogle Scholar
  35. Liang, L., & Schwartz, M. D. (2009). Landscape phenology: An integrative approach to seasonal vegetation dynamics. Landscape Ecology, 24(4), 465–472.  https://doi.org/10.1007/s10980-009-9328-x.CrossRefGoogle Scholar
  36. Ma, X., Huete, A., Yu, Q., Coupe, N. R., Davies, K., Broich, M., et al. (2013). Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect. Remote Sensing of Environment, 139, 97–115.  https://doi.org/10.1016/j.rse.2013.07.030.CrossRefGoogle Scholar
  37. Maignan, F., Bréon, F. M., Bacour, C., Demarty, J., & Poirson, A. (2008). Interannual vegetation phenology estimates from global AVHRR measurements. Remote Sensing of Environment, 112(2), 496–505.  https://doi.org/10.1016/j.rse.2007.05.011.CrossRefGoogle Scholar
  38. Mishra, N. B., & Mainali, K. P. (2017). Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers. Science of the Total Environment, 587–588, 326–339.  https://doi.org/10.1016/j.scitotenv.2017.02.156.CrossRefGoogle Scholar
  39. Motohka, T., Nasahara, K. N., Murakami, K., & Nagai, S. (2011). Evaluation of sub-pixel cloud noises on MODIS daily spectral indices based on in situ measurements. Remote Sensing, 3(12), 1644–1662.  https://doi.org/10.3390/rs3081644.CrossRefGoogle Scholar
  40. Moulin, S., Kergoat, L., Viovy, N., & Dedieu, G. (1997). Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate, 10(6), 1154–1170.CrossRefGoogle Scholar
  41. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626), 698–702.  https://doi.org/10.1038/386698a0.CrossRefGoogle Scholar
  42. Nag, P., & Sengupta, S. (1992). Geography of India. New Delhi: Concept Publishing Company.Google Scholar
  43. NRSC. (2012). National land use land cover mapping using multi-temporal satellite data technical manual (2nd cycle). Hyderabad: National Remote Sensing Centre.Google Scholar
  44. Palni, L. M. S., & Rawal, R. S. (2010). Conservation of Himalayan bioresources: An ecological, economical and evolutionary perspective. In V. P. Sharma (Ed.), Nature at work: Ongoing saga of evolution (pp. 369–402). New Delhi: Springer India.CrossRefGoogle Scholar
  45. Panday, P. K., & Ghimire, B. (2012). Time-series analysis of NDVI from AVHRR data over the Hindu Kush-Himalayan region for the period 1982–2006. International Journal of Remote Sensing, 33(21), 6710–6721.  https://doi.org/10.1080/01431161.2012.692836.CrossRefGoogle Scholar
  46. Pau, S., & Still, C. J. (2014). Phenology and productivity of C3 and C4 Grasslands in Hawaii. PLoS ONE, 9(10), e107396.  https://doi.org/10.1371/journal.pone.0107396.CrossRefGoogle Scholar
  47. Paudel, K. P., & Andersen, P. (2013). Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. Climatic Change, 117(1–2), 149–162.  https://doi.org/10.1007/s10584-012-0562-x.CrossRefGoogle Scholar
  48. Qamer, F., Xi, C., Abbas, S., Murthy, M., Ning, W., & Anming, B. (2016). An assessment of productivity patterns of grass-dominated Rangelands in the Hindu Kush Karakoram Region, Pakistan. Sustainability, 8(10), 961.  https://doi.org/10.3390/su8090961.CrossRefGoogle Scholar
  49. Qiu, B., Zhong, M., Tang, Z., & Chen, C. (2013). Spatiotemporal variability of vegetation phenology with reference to altitude and climate in the subtropical mountain and hill region, China. Chinese Science Bulletin, 58(23), 2883–2892.  https://doi.org/10.1007/s11434-013-5847-6.CrossRefGoogle Scholar
  50. Rana, R. S., Bhagat, R. M., Kalia, V., & Lal, H. (2009). Impact of climate change on shift of apple belt in Himachal Pradesh. In Impact of climate change on agriculture, 2009/12/17/18 2009 (Vol. XXXVIII-8/W3, pp. 131–137). Ahmedabad: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives).Google Scholar
  51. Randhawa, S. S., Rathore, B. P., & Rai, I. (2016). Monitoring of seasonal snow cover in Himachal Pradesh using satellite data. Shimla: Himachal Pradesh State Centre on Climate Change.Google Scholar
  52. Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., & Toomey, M. (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156–173.  https://doi.org/10.1016/j.agrformet.2012.09.012.CrossRefGoogle Scholar
  53. Rodgers, W. A., Panwar, H. S., & Mathur, V. B. (2002). Wildlife protected area network in India: A review (executive summary) (p. 44p). Dehradun: Wildlife Institute of India.Google Scholar
  54. Roy, D. P., Borak, J. S., Devadiga, S., Wolfe, R. E., Zheng, M., & Descloitres, J. (2002). The MODIS land product quality assessment approach. Remote Sensing of Environment, 83(1), 62–76.CrossRefGoogle Scholar
  55. SAC. (2016). Monitoring snow and glaciers of Himalayan Region, space applications centre: Space applications centre. Ahmedabad: ISRO.Google Scholar
  56. Samra, J. S., Singh, G., & Ramakrishna, Y. S. (2003). Cold wave of 2002–03: Impact on agriculture. Nagpur: Natural Resource Management Division, Indian Council of Agricultural Research.Google Scholar
  57. Schwartz, M. D., & Reed, B. C. (1999). Surface phenology and satellite sensor-derived onset of greenness: An initial comparison. International Journal of Remote Sensing, 20(17), 3451–3457.CrossRefGoogle Scholar
  58. Sha, Z., Zhong, J., Bai, Y., Tan, X., & Li, J. (2016). Spatio-temporal patterns of satellite-derived grassland vegetation phenology from 1998 to 2012 in Inner Mongolia, China. Journal of Arid Land, 8(3), 462–477.  https://doi.org/10.1007/s40333-016-0121-9.CrossRefGoogle Scholar
  59. Sharma, J. R., & Ghosh, A. N. (1997). Grassland productivity in the Indian Himalaya and performance of introduced temperate forage species in cold and semi-arid environment. In XVIII international grassland congress, 1997/06/08/19 1997 (pp. 21–43, v. 1).Google Scholar
  60. Sharma, P. D., & Minhas, R. S. (1993). Land use and the biophysical environment of Kinnaur District, Himachal Pradesh, India. Mountain Research and Development, 13(1), 41.  https://doi.org/10.2307/3673643.CrossRefGoogle Scholar
  61. Shekhar, M. S., Chand, H., Kumar, S., Srinivasan, K., & Ganju, A. (2010). Climate-change studies in the western Himalaya. Annals of Glaciology, 51(54), 105–112.CrossRefGoogle Scholar
  62. Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12(9), 2775–2786.CrossRefGoogle Scholar
  63. Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE, 7(5), e36741.  https://doi.org/10.1371/journal.pone.0036741.CrossRefGoogle Scholar
  64. Singh, D., Juyal, V., & Sharma, V. (2016). Consistent seasonal snow cover depth and duration variability over the Western Himalayas (WH). Journal of Earth System Science, 125(7), 1451–1461.  https://doi.org/10.1007/s12040-016-0737-3.CrossRefGoogle Scholar
  65. Singh, P., Ramasastri, K. S., & Kumar, N. (1995). Topographical influence on precipitation distribution in different ranges of western Himalayas. Hydrology Research, 26(4–5), 259–284.CrossRefGoogle Scholar
  66. Stöckli, R., Rutishauser, T., Baker, I., Liniger, M. A., & Denning, A. S. (2011). A global reanalysis of vegetation phenology. Journal of Geophysical Research.  https://doi.org/10.1029/2010jg001545.Google Scholar
  67. Studer, S., Stöckli, R., Appenzeller, C., & Vidale, P. L. (2007). A comparative study of satellite and ground-based phenology. International Journal of Biometeorology, 51(5), 405–414.  https://doi.org/10.1007/s00484-006-0080-5.CrossRefGoogle Scholar
  68. Tasumi, M., Hirakawa, K., Hasegawa, N., Nishiwaki, A., & Kimura, R. (2014). Application of MODIS land products to assessment of land degradation of Alpine Rangeland in Northern India with limited ground-based information. Remote Sensing, 6(10), 9260–9276.  https://doi.org/10.3390/rs6109260.CrossRefGoogle Scholar
  69. Testa, S., Mondino, E. C. B., & Pedroli, C. (2014). Correcting MODIS 16-day composite NDVI time-series with actual acquisition dates. European Journal of Remote Sensing, 47(1), 285–305.  https://doi.org/10.5721/EuJRS20144718.CrossRefGoogle Scholar
  70. Tewari, V. P., & Kapoor, K. S. (2013). Western Himalayan cold deserts: Biodiversity, eco-restoration, ecological concerns and securities. Annals of Arid Zone, 52, 225–232.Google Scholar
  71. Thomson Reuters Foundation. (2017). World’s ‘highest’ village in Spiti Valley runs dry as global warming hits the Himalayas. http://www.hindustantimes.com/india-news/world-s-highest-village-runs-dry-as-warming-hits-the-himalayas/story-QSAB2bLTwWSFobNrm56uxM.html. Accessed 15 December 2018.
  72. Tiwari, P. C., & Joshi, B. (2013). An ecological assessment of grasslands and their interfaces in Kumaon Himalaya, India. In W. Ning (Ed.), High-altitude rangelands and their interfaces in the Hindu Kush Himalayas (pp. 55–64). Kathmandu, Nepal: International Centre for Integrated Mountain Development.Google Scholar
  73. Tiwari, S., Kar, S. C., & Bhatla, R. (2016). Examination of snowmelt over Western Himalayas using remote sensing data. Theoretical and Applied Climatology, 125(1–2), 227–239.  https://doi.org/10.1007/s00704-015-1506-y.CrossRefGoogle Scholar
  74. Vanak, A. T., Kulkarni, A., Gode, A., Sheth, C., & Krishnaswamy, J. (2015). Extent and status of semiarid savanna grasslands in Peninsular India. In G. S. Rawat & B. S. Adhikari (Eds.), Ecology and management of grassland habitats in India, ENVIS bulletin: Wildlife and protected areas (Vol. 17, pp. 192–201). Dehradun: Wildlife Institute of India.Google Scholar
  75. Verhegghen, A., Bontemps, S., & Defourny, P. (2014). A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily spot-vegetation observations. International Journal of Remote Sensing, 35(7), 2440–2471.  https://doi.org/10.1080/01431161.2014.883105.CrossRefGoogle Scholar
  76. Viña, A., Liu, W., Zhou, S., Huang, J., & Liu, J. (2016). Land surface phenology as an indicator of biodiversity patterns. Ecological Indicators, 64, 281–288.  https://doi.org/10.1016/j.ecolind.2016.01.007.CrossRefGoogle Scholar
  77. Wang, S., Yang, B., Yang, Q., Lu, L., Wang, X., & Peng, Y. (2016). Temporal trends and spatial variability of vegetation phenology over the Northern hemisphere during 1982–2012. PLoS ONE, 11(6), e0157134.  https://doi.org/10.1371/journal.pone.0157134.CrossRefGoogle Scholar
  78. White, M. A., de Beurs, K. M., Didan, K., Inouye, D. W., Richardson, A. D., Jensen, O. P., et al. (2009). Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biology, 15(10), 2335–2359.  https://doi.org/10.1111/j.1365-2486.2009.01910.x.CrossRefGoogle Scholar
  79. White, M. A., & Nemani, R. R. (2006). Real-time monitoring and short-term forecasting of land surface phenology. Remote Sensing of Environment, 104(1), 43–49.  https://doi.org/10.1016/j.rse.2006.04.014.CrossRefGoogle Scholar
  80. White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11(2), 217–234.  https://doi.org/10.1029/97GB00330.CrossRefGoogle Scholar
  81. Xia, H., Li, A., Zhao, W., Jin, H., Lei, G., Bian, J., et al. (2014). Spatio-temporal variation and driving forces in alpine grassland phenology in the Zoigê plateau from 2001–2013. In 2014 (pp. 2181–2184). IEEE.Google Scholar
  82. Xie, Y., Ahmed, K. F., Allen, J. M., Wilson, A. M., & Silander, J. A. (2015). Green-up of deciduous forest communities of northeastern North America in response to climate variation and climate change. Landscape Ecology, 30(1), 109–123.  https://doi.org/10.1007/s10980-014-0099-7.CrossRefGoogle Scholar
  83. Xin, Q., Broich, M., Zhu, P., & Gong, P. (2015). Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sensing of Environment, 161, 63–77.  https://doi.org/10.1016/j.rse.2015.02.003.CrossRefGoogle Scholar
  84. Yu, L., Liu, T., Bu, K., Yan, F., Yang, J., Chang, L., et al. (2017). Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Scientific Reports.  https://doi.org/10.1038/s41598-017-14918-4.Google Scholar
  85. Zhang, J., Chang, Q., & Yao, F. (2015). Grassland phenology in different eco-geographic regions over the Tibetan Plateau. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9, 964–969.Google Scholar
  86. Zhang, X., Friedl, M. A., Schaaf, C. B., & Strahler, A. H. (2004). Climate controls on vegetation phenological patterns in northern mid-and high latitudes inferred from MODIS data. Global Change Biology, 10(7), 1133–1145.CrossRefGoogle Scholar
  87. Zhang, X., Hodges, J. C. F., Schaaf, C. B., Friedl, M. A., Strahler, A. H., & Gao, F. (2001). Global vegetation phenology from AVHRR and MODIS data. In 2001 (Vol. 5, pp. 2262–2264). IEEE.Google Scholar
  88. Zoffoli, M. L., Kandus, P., Madanes, N., & Calvo, D. H. (2008). Seasonal and interannual analysis of wetlands in South America using NOAA-AVHRR NDVI time series: the case of the Parana Delta Region. Landscape Ecology, 23(7), 833–848.  https://doi.org/10.1007/s10980-008-9240-9.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  1. 1.Department of Remote SensingBirla Institute of Technology (BIT), MesraRanchiIndia

Personalised recommendations