Aster Mapping of Limestone Deposits and Associated Lithounits of Parts of Chikkanayakanahalli, Southern Part of Chitradurga Schist Belt, Dharwar Craton, India

  • H. T. BasavarajappaEmail author
  • L. Jeevan
  • S. Rajendran
  • M. C. Manjunatha
Research Article


Economically viable limestone deposits are mostly formed by calcite minerals, and these minerals are widely used in manufacturing of cement, mortar, fertilizer and flux for smelting of iron ores, and mapping of such deposits is significant and important in scientific research. This study examines the capability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with the wavelength range visible–near-infrared and short-wave infrared spectral bands to map such limestone carbonate deposits and associated lithounits occurred in and around of Chikkanayakanahalli, southern part of the Chitradurga schist belt using minimum noise fraction (MNF) and decorrelation stretching methods. The study results that (1) the RGB image of MNF (R: B1; G: B2; B: B3) of ASTER is capable of discriminating the limestones and associated different rock types, namely banded magnetite quartzites (BMQ), graywackes, Mn- and Fe-rich cherts, metabasalts, granitic gneisses, granitoids and migmatites and (2) the decorrelation stretch image of ASTER bands 8, 3, 1 of the ASTER delineated clearly the limestones and associated rocks of the study area. Study of spectral signatures of field samples of such economic limestones in the wavelength of 350–2500 nm using Fieldspec3 Spectroradiometer showed the spectral absorption near 2.32 μm due to the presence of calcite minerals in the rocks. The results of study are cross-verified in the study area and confirmed through petrological and chemical analyses of the samples. This study bespeaks the potential of ASTER sensor and application of image processing methods to map the economic limestone deposits and associated rocks of the study area.


ASTER Chikkanayakanahalli MNF Decorrelation Limestone Spectroradiometer 



We thank the Japan Space Systems and ERSDAC (Japan) for providing ASTER data and UGC RGNF funding agency for the financial support to do this research. Authors are very much thankful to the Chairman, Department of Studies in Earth Science, Center for Advance Studies in Precambrian geology, University of Mysore.


  1. Abrams, M. (2000). The advanced spaceborne thermal emission and reflection radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. International Journal of Remote Sensing, 21, 847–859.CrossRefGoogle Scholar
  2. Ali, M. Q., Basavarajappa, H. T., & Ranjbar, H. (2009). Application of principal component analysis to ASTER and ETM + data for mapping the alteration zones in North East of Hajjah, Yemen. Asian Journal of Geoinformatics, 9(2), 15–21.Google Scholar
  3. Anantha Murthy, K. S. (1980) Carbonates, iron formation, iron and manganese ore deposits of the chiknayakanhalli schist belt Tumkur District, Karnataka. A thesis from Karnataka University.Google Scholar
  4. ASD Inc. (2012). Field spec specification. Accessed on September 3, 2012.
  5. Baldridge, A. M., Hook, S. J., Grove, C. I., & Rivera, G. (2009). The ASTER spectral library version 2.0. Remote Sensing Environ, 113, 711–715.CrossRefGoogle Scholar
  6. Bedini, E. (2011). Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Advances in Space Research, 47, 60–73.CrossRefGoogle Scholar
  7. Boardman, J. W., Kruse, F. A., & Green, R. O. (1995). Mapping target signatures via partial unmixing of AVIRIS data. In Summaries, Proceedings of the 5th JPL Airborne Earth Science Workshop (95-1, 1: 23–26), January 23–26, Pasadena, California: JPL Publ.Google Scholar
  8. Brandmeier, M. (2010). Remote sensing of Carhuarazo volcanic complex using ASTER imagery in Southern Peru to detect alteration zone and volcanic structures—A combined approach of image processing in ENVI and ArcGIS/ArcScene. Geocarto International, 25, 629–648.CrossRefGoogle Scholar
  9. Chen, C. M. (2000). Comparison of principal component analysis and Minimum Noise Fraction transformation for reducing the dimensionality of hyperspectral imagery. Geographical Research, 33, 163–178.Google Scholar
  10. Clark, R. N. (1999). Spectroscopy of rock and minerals and principles of spectroscopy. In A. N. Rencz (Ed.), Remote sensing for the earth sciences: Manual of remote sensing (3rd ed., Vol. 3, pp. 3–58). New York: Wiley.Google Scholar
  11. Clark, R. N., Swayze, G. A., Heidebrecht, K., Green, R. O., & Goetz, A. F. H. (1995) Calibration to surface reflectance of terrestrial imaging spectrometry data: Comparison of methods. In Summaries of the 5th Annual JPL Airborne Geosciences Workshop (pp. 41–42). Jet Propulsion Laboratory Special Publication.Google Scholar
  12. Crosta, A. P., Filho, C. R. D. S., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24, 4233–4240.CrossRefGoogle Scholar
  13. Crowley, J. K. (1986). Visible and near-infrared spectra of carbonate rocks: Reflectance variations related to petrographic texture and impurities. Journal Geophysical Research, 91, 5001–5012.CrossRefGoogle Scholar
  14. Devaraju,T. C., & Anathmurthy, K. S. (1977) Iron and manganese ores of C.N. halli schist belt, Tumkur district. In C. Naganna & B. Somashekar (Eds.) Proceedings of the first symposium on the geology, exploration, mining processing and metallurgy of ferrous and ferro-alloy minerals (pp. 22–31).Google Scholar
  15. Devaraju, T. C., & Anathmurthy, K. S. (1984). Carbonates of Chikkanayakanahalli schist belt, Karnataka. The Journal of the Geological Society of India, 25, 162–174.Google Scholar
  16. ENVI. (2009). Atmospheric Correction Module: QUAC and FLAASH User’s Guide.
  17. Gaffey, S. J. (1985). Reflectance spectroscopy in the visible and near infrared (0.35–2.55 microns): Applications in carbonate petrology. Geology, 13, 270–273.CrossRefGoogle Scholar
  18. Gaffey, S. J. (1986a). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. American Mineralogist, 71, 151–162.Google Scholar
  19. Gaffey, S. J. (1986b). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. American Mineralogist, 71, 151–162.Google Scholar
  20. Gaffey, S. J. (1987). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Anhydrous carbonate minerals. Journal Geophysical Research, 92(B2), 1429–1440.CrossRefGoogle Scholar
  21. Garrels, R. M. (1960). Mineral Equilibria (p. 254). Newyork: Harper and brothers.Google Scholar
  22. Ghosh, S. K., & Chatterjee, B. K. (1990). Paleoenvironment reconstruction of early Proterozoic Kolhan siliciclastic rocks, Keonjhar districts, Orissa, India. Journal Geological Society of India, 35, 273–286.Google Scholar
  23. Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience Remote Sensing, 26(1), 65–74.CrossRefGoogle Scholar
  24. Guha, A., Rao, A., Ravi, S., Vinod Kumar, K., & Dhananjaya Rao, E. N. (2012a). Analysis of the potential of kimberlite rock spectra as spectral end member using samples from Narayanpet kimberlite Field (NKF), Andhra Pradesh. Current Science, 103(9), 1096–1104.Google Scholar
  25. Guha, A., et al. (2012b). Spectroscopic study of rocks of Hutti-Maski Schist Belt, Karnataka. Journal Geological Society of India, 79, 335–344.CrossRefGoogle Scholar
  26. Gupta, R. P. (2003). Remote Sensing Geology (2nd ed.). Heidelberg: Springer.CrossRefGoogle Scholar
  27. Hamilton, W. R., Wolley, A. R., & Bishop, A. C. (1995). Hamlyn guide: Minerals, rocks and fossils. Hong Kong: Mandarin Offset.Google Scholar
  28. Harding, D. J., Wirth, K. R., & Bird, J. M. (1989). Spectral mapping of Alaskan ophiolites using landsat thematic mapper data. Remote Sensing of Environment, 28, 219–232.CrossRefGoogle Scholar
  29. Haselwimmer, C. E., Riley, T. R., & Liu, J. G. (2011). Lithologic mapping in the Oscar II Coast area, Graham Land, Antarctic Peninsula using ASTER data. International Journal of Remote Sensing, 32(7), 2013–2035. Scholar
  30. Hubbard, B. E., & Crowley, J. K. (2005). Mineral mapping on the Chilean– Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sensing Environment, 99, 173–186.CrossRefGoogle Scholar
  31. Hunt, G. R., & Salisbury, J. W. (1970). Visible and near-infrared spectra of minerals and rocks. Modern Geology, 1, 283–300.Google Scholar
  32. Jensen, J. R. (2005). Introductory digital image processing. Upper Saddle River: Person Prentice Hall.Google Scholar
  33. Kalinowski, A., & Oliver, S. (2004). ASTER mineral index processing manual.
  34. Khan, S. D., Mahmood, K., & Casey, J. F. (2007). Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. Journal of Asian Earth Science, 30, 333–343.CrossRefGoogle Scholar
  35. Mars, J. C., & Rowan, L. C. (2010). Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing Environment, 114, 2011–2025.CrossRefGoogle Scholar
  36. Mukhopadhyay, D., Baral, M. C., & Ghosh, D. (1981). A tectonostratigraphic model of the Chitradurga schist belt, Karnataka, India. Journal of the Geological Society of India, 22, 22–31.Google Scholar
  37. Mukhopadhyay, D., & Ghosh, D. (1983). Superposed deformation in the Dharwar rocks of the Southern part of the Chitradurga schist belt near Dodguni, Karnataka. Geological Science India Memoir, 4, 275–292.Google Scholar
  38. Mukhopadhyay, J., Ghosh, G., Nandi, Ajoy K., & Chaudhuri, A. K. (2006). Depositional setting of the Kolhan Group: Its implications for the development of a Meso to Neoproterozoic deep-water basin on the South Indian Craton. South African Journal of Geology, 109, 183–192.CrossRefGoogle Scholar
  39. Philip, G., Ravindran, K. V., & Mathew, J. (2003). Mapping the Nidar ophiolite complex of the Indus suture zone, Northwestern-Trans Himalaya using IRS-1C/1D data. International Journal of Remote Sensing, 24, 4979–4994.CrossRefGoogle Scholar
  40. Pour, A. B., & Hashim, M. (2011a). Spectral transformation of ASTER data and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran. International Journal of the Physical Sciences, 6(8), 2037–2059.Google Scholar
  41. Pour, B. A., & Hashim, M. (2011b). Application of advanced spaceborne thermal emission and reflection radiometer (ASTER) data in geological mapping. International Journal of Physical Sciences, 6, 7657–7668.Google Scholar
  42. Pournamdari, M., Hashim, M., & Pour, A. B. (2014a). Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, South Iran. Advances in Space Research, 54, 694–709.CrossRefGoogle Scholar
  43. Pournamdari, M., Hashim, M., & Pour, A. B. (2014b). Application of ASTER and Landsat TM data for geological mapping of Esfandagheh ophiolite complex, southern Iran. Resource Geology, 64, 233–246.CrossRefGoogle Scholar
  44. Radhakrishna, B. P. (1952). Proceedings of the Indian Science Congress 39th Session, IV (p 181).Google Scholar
  45. Rajendran, S., Al-Khirbash, S., Pracejus, B., Nasir, S., Al-Abri, A. H., Kusky, T. M., & Ghulam, A. (2012). ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountain: Exploration strategy. Ore Geology Reviews, 44, 121–135.CrossRefGoogle Scholar
  46. Rajendran, S., Hersi, O. S., Al-Harthy, A., et al. (2011). Capability of advanced spaceborne thermal emission and reflection radiometer (ASTER) on discrimination of carbonates and associated rocks and mineral identification of eastern mountain region (Saih Hatat window) of Sultanate of Oman. Carbonates and Evaporites, 26, 351. Scholar
  47. Rajendran, S., & Nasir, S. (2013). ASTER spectral analysis of ultramafic lamprophyres (carbonatites and aillikites) within the Batain nappe, northeastern margin of Oman: A proposal developed for spectral absorption. International Journal of Remote Sensing, 34(8), 2763–2795.CrossRefGoogle Scholar
  48. Rajendran, S., & Nasir, S. (2014a). Hydrothermal altered serpentinized zone and a study of Ni-magnesioferrite-magnetite-awaruite occurrences in Wadi Hibi, Northern Oman Mountain: Discrimination through ASTER mapping. Ore Geology Reviews, 62, 211–226.CrossRefGoogle Scholar
  49. Rajendran, S., & Nasir, Sobhi. (2014b). ASTER mapping of limestone formations and study of caves, springs and depressions in parts of Sultanate of Oman. Environmental Earth Sciences, 71, 133–146.CrossRefGoogle Scholar
  50. Rajendran, S., & Nasir, Sobhi. (2014c). ASTER spectral sensitivity of carbonate rocks: Study in Sultanate of Oman. Advances in Space Research, 53, 656–673.CrossRefGoogle Scholar
  51. Ramakrishna, B. P., & Vaidyanadhan, R. (2008). Geology of Karnataka. India: Geol Soc.Google Scholar
  52. Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using Advanced Speceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366.CrossRefGoogle Scholar
  53. Rowan, L. C., & Mars, J. C. (2005). Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, 99, 105–126.CrossRefGoogle Scholar
  54. Sanjeevi, S. (2008). Targeting limestone and bauxite deposits in southern India by spectral unmixing of hyperspectral image data. In The international archives of the photogrammetry, remote sensing and spatial information sciences ISPRS congress Beijing, Vol. XXXVII, Part B8, Commission VIII, Beijing, p. 1189.Google Scholar
  55. Srinivasan, R., Shukla, M., Naqvi, S. M., Yadav, V. K., Venkatachala, B. S., Uday Raj, B., et al. (1989). Archaean stromatolites from the Chitradurga schist belt, Dharwar craton, South India. Precambrian Research, 43, 239–250.CrossRefGoogle Scholar
  56. Srinivasan, R., & Srinivas, B. L. (1972). Dharwar stratigraphy. Journal of the Geological Society of India, 13, 72–83.Google Scholar
  57. Swaminath, J., Ramakrishnan, M., & Viswanatha, M. N. (1976). Dharwar stratigraphic model and Karnataka craton evolution. Records of the Geological Survey of India, 107(2), 149–175.Google Scholar
  58. Van der Meer, F. (1994). Extraction of mineral absorption features from high spectral resolution data using non parametric geostatistical techniques. International Journal of Remote Sensing, 15(11), 2193–2214.CrossRefGoogle Scholar
  59. Van der Meer, F. (1995). Spectral reflectance of carbonate mineral mixtures and bidirectional reflectance theory: Quantitative analysis techniques for application in remote sensing. Remote Sensing Reviews, 13, 67–94.CrossRefGoogle Scholar
  60. Yamaguchi, Y. I., Fujisada, H., Kudoh, M., Kawakami, T., Tsu, H., Kahle, A. B., et al. (1999). ASTER instrument characterization and operation scenario. Advances in Space Research, 23(8), 1415–1424.CrossRefGoogle Scholar
  61. Zhang, X., Pazner, M., & Duke, N. (2007). Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing, 62, 271–282.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  1. 1.Department of Studies in Earth Science, CAS in Precambrian GeologyUniversity of MysoreMysoreIndia
  2. 2.Department of Earth Sciences, College of ScienceSultan Qaboos UniversityMuscatOman

Personalised recommendations