Advertisement

Utilization of full-polarimetric SAR data (RADARSAT-2), ASTER and Landsat 8 data in geological mapping of the west Gebal Elba area, Halayeb district, South Eastern Desert, Egypt

  • Hassan Mohy
  • Islam Abou El-MagdEmail author
  • Fawzy Basta
  • Ali Amasha
Research Article

Abstract

The present study explored the potentiality of integrating principal component analysis, minimum noise fraction, independent component analysis transformation and spectral ratioing of selected bands of Landsat 8 and Advanced Spaceborne Thermal Emission and Reflection Radiometer for geological mapping in west Gebel Elba area, Halayeb district, South Eastern desert, Egypt. Data fusion of optical and radar remote sensing using Color Normalization Transformation showed an effective approach to further identify lithological units and rock boundaries. The Freeman–Durden decomposition method was used to determine the dominant scattering mechanisms and to identify the current state of the surface cover. This approach provided solution for geological mapping of the study area, which is impeded by difficult accessibility and could be generic methodology for similar studies. It enabled to identify and map rock units and lithological formations at range of validly from 73% for wadi deposits to 90 for quartz diorite.

Keywords

RADARSAT-2 ASTER Landsat 8 Halayeb district Gebel Elba, Egypt 

References

  1. Abrahams, A. D., & Parsons, A. J. (Eds.). (1994). Geomorphology of desert environments. London: Chapman Hall.Google Scholar
  2. Baghdadi, N., Gaultier, S., & King, C. (2002). Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks. Canadian Journal of Remote Sensing, 28, 701–711.CrossRefGoogle Scholar
  3. Basta, F. F. (1998). Mineralogy and petrology of some gabbroic intrusions in Sinai and the Eastern Desert, Egypt. Annals of the Geological Survey of Egypt, 21, 239–271.Google Scholar
  4. Boerner, W. M. (2007). Introduction to synthetic aperture radar (SAR) polarimetry. New York: Wexford College. (ch. 1).Google Scholar
  5. Boerner, W., Mott, H., Luneburg, E., Livingstone, C., Brisco, B., Brown, R., & Paterson, S. (1998). Polarimetry in radar remote sensing: Basic and applied concepts. In Henderson, F., & Lewis, A. (Eds.), Manual of remote sensing, 3rd edn (Vol. 2, pp. 271–357).Google Scholar
  6. Bretschneider, T., & Kao, O., (2000). Image fusion in remote sensing. In: Proceedings of the 1st online symposium of electronic engineers.Google Scholar
  7. Canadian Space Agency (2007–2008) Departmental Performance Report.Google Scholar
  8. Chavez, P. S., Jr., Sides, S. C., & Anderson, J. A. (1991). Comparison of three different methods to merge multi resolution and multispectral data; Landsat TM and SPOT panchromatic. Photogrammetric Engineering and Remote Sensing, 57, 295–303.Google Scholar
  9. Cloude, S. R., & Pottier, E. (1997). An entropy based classification scheme for land applications of polarimetric SAR image data. IEEE Transactions on Geoscience and Remote Sensing, 35, 68–78.CrossRefGoogle Scholar
  10. Dobson, M. C., Pierce, L. E., & Ulaby, F. T. (1997). The role of frequency and polarization in terrain classification using SAR data. IEEE Transactions on Geoscience and Remote Sensing, 35(4), 1621–1623.Google Scholar
  11. EGSMA, (2002). Geological map of Marsa Shaab Quadrangle, Egypt, with scale 1:250,000.Google Scholar
  12. El Ramly, M. F. (1972). A new geological map for the basement rocks in the Eastern and South Western Desert of Egypt, scale 1:1,000,000. Annals of the Geological Survey of Egypt, 2, 1–18.Google Scholar
  13. ESA (2008). PolSARpro_Data Format. http://earth.eo.esa.int/polsarpro/Manuals/.
  14. Gad, S., & Raef, A. (2012). Factor analysis approach for composited ASTER band ratios and wavelet transform pixel-level image fusion: lithological mapping of the Neoproterozoic Wadi Kid area, Sinai, Egypt. International Journal of Remote Sensing, 33(5), 1488–1506.CrossRefGoogle Scholar
  15. Glennie, K. W. (1970). Desert sedimentary environments. Amsterdam: Elsevier.Google Scholar
  16. Hassan, S. M., & Ramadan, T. M. (2015). Mapping of the late Neoproterozoic basement rocks and detection of the gold-bearing alteration zones at Abu Marawat–Semna area, eastern desert, Egypt using remote sensing data. Arabian Journal of Geosciences, 8, 4641–4656.CrossRefGoogle Scholar
  17. Hugenholtz, C., & Van der Sanden, J. (2001). Polarimetric SAR for geomorphic mapping in the intertidal zone, Minas Basin, Bay of Fundy, Nova Scotia. 24 (Preprint Canada Centre for Remote Sensing).Google Scholar
  18. Hussein, A. A., Ali, M. M., & El Ramly, M. F. (1982). A proposed new classification of the granites of Egypt. Journal of Volcanology and Geothermal Research, 14, 187–198.CrossRefGoogle Scholar
  19. Hyvarinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.CrossRefGoogle Scholar
  20. Jensen, J. R. (1996). Introductory digital image processing., Series in Geographic Information Science Upper Saddle River: Prentice Hall.Google Scholar
  21. Lee, J. S. (1981). Refined filtering of image noise using local statistics. Computer Graphics and Image Processing, 15(4), 380–389.CrossRefGoogle Scholar
  22. Lee, J. S., & Grunes, M. R. (1994). Classification of multi-look polarimetric SAR data based on complex Wishart distribution. International Journal of Remote Sensing, 15(11), 2299–2311.CrossRefGoogle Scholar
  23. Lee, J. S., Grunes, M. R., Ainsworth, T. L., Du, L.-J., Dale, L. S., & Cloude, S. R. (1999). Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Transactions on Geoscience and Remote Sensing, 37(5), 2249–2258.CrossRefGoogle Scholar
  24. Lee, J. S., & Pottier, E. (2009). Polarimetric radar imaging: From basics to applications. Boca Raton: Taylor & Francis Group.CrossRefGoogle Scholar
  25. Maurice, A. E., Bakhit, B. R., Basta, F. F., & Khiamy, A. A. (2013). Geochemistry of gabbros and granitoids (M- and I-types) from the Nubian Shield of Egypt: Roots of Neoproterozoic intra-oceanic island arc. Precambrian Research, 224, 397–411.CrossRefGoogle Scholar
  26. Moran, M. S., Hymer, D. C., Qi, J. G., & Sano, E. E. (2000). Soil moisture evaluation using multi-temporal synthetic aperture radar (SAR) in semiarid rangeland. Agricultural and Forest Meteorology, 105, 69–80.CrossRefGoogle Scholar
  27. Mustard, J. F., & Sunshine, M. J. (1998). Spectral analysis for earth science: investigations using remote sensing data. In: Rencz, A. (ed.), Remote sensing for the earth sciences: Manual for remote sensing, 3rd ed (Vol. 3, pp. 251–306).Google Scholar
  28. Papathanassiou, K. P., & Buchroithner, M. F. (1993). Signature analysis of multifrequency polarimetric NASA DC-8 AIRSAR data of alpine geo-applications. EARSeL Advances in Remote Sensing, 2(1-I), 287–299.Google Scholar
  29. Qiu, F., Abdelsalam, M., & Thakkar, P. (2006). Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heianisuture, Southern Egypt. Journal of African Earth Sciences, 44(2), 169–180.CrossRefGoogle Scholar
  30. Sarah, N., Douglas, J., Amine, M., Jason, D., & Steve, S. (2011). Assessing RADARSAT-2 polarimetric SAR for mapping Shoreline Cleanup and Assessment Technique (SCAT) classes in the Canadian Arctic. In 32nd Canadian symposium on remote sensing (pp. 13–16).Google Scholar
  31. Stern, R. J. (1981). Petrogenesis and tectonic setting of Late Precambrian ensimatic volcanic rocks, Central Eastern Desert o Egypt. Precambrian Research, 16, 195–230.CrossRefGoogle Scholar
  32. Takla, M. A., Basta, F. F., Hussein, A. A., & Madbouly, M. I. (2000). Geology, petrology, opaque mineralogy and geochemistry of some mafic—Ultramafic intrusions in the South Eastern Desert, Egypt.Google Scholar
  33. Ulaby, F. T., Moore, R. K., & Fung, A. K. (1981). Microwave remote sensing: active and passive., Remote Sensing Series Boston: Addison-Wesley.Google Scholar
  34. Van Zyl, J. J. (1989). Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Transactions on Geoscience and Remote Sensing, 27(1), 36–45.CrossRefGoogle Scholar
  35. Van Zyl, J. J., & Zebker, H. A. (1990). Imaging radar polarimetry. In Kong, J. A. (Ed.), Progressing electromagnetics research (Vol. 3, pp. 277–370). Pier.Google Scholar
  36. Van Zyl, J. J., Zebker, H. A., & Elachi, C. (1987). Imaging radar polarization signatures: Theory and observation. Radio Science, 22, 529–543.CrossRefGoogle Scholar
  37. Zebker, H. A., & van Zyl, J. J. (1991). Imaging radar polarimetry: A review. Proceeding of the IEEE, 79(11), 1583–1606.CrossRefGoogle Scholar
  38. Zebker, H. A., van Zyl, J. J., & Held, D. N. (1987). Imaging radar polarimetry from wave synthesis. Journal of Geophysical Research, 92(B1), 683–701.CrossRefGoogle Scholar
  39. Zhang, Fengli, Maosong, Xu, Xie, Chou, Xia, Zhongsheng, Li, Kun, AiminCai, Yun Shao, et al. (2011). Polarimetric signature and the temporal variation analysis for deforestation mapping in Southwest China. PIERS, 7(7), 613–616.Google Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  • Hassan Mohy
    • 1
  • Islam Abou El-Magd
    • 2
    Email author
  • Fawzy Basta
    • 1
  • Ali Amasha
    • 3
  1. 1.Geology DepartmentCairo UniversityCairoEgypt
  2. 2.Environmental Studies DepartmentNational Authority for Remote Sensing and Space SciencesCairoEgypt
  3. 3.Arab Academy for Science, Technology & Maritime TransportCairoEgypt

Personalised recommendations