Advertisement

Posterior Cramér Rao Bounds for Cooperative Localization in Low-Cost UAV Swarms

  • Salil GoelEmail author
  • Allison Kealy
  • Bharat Lohani
Research Article
  • 63 Downloads

Abstract

Cooperative networks of unmanned aerial vehicles (UAV) offer interesting advantages such as increased efficiency and improved accuracy when compared with independently operating UAVs in most applications like remote sensing, mapping, surveillance, exploration, search and rescue, situational awareness, disaster management. However, the quality of the products derived using UAV data is very much dependent on the accuracy with which a UAV can be localized. Although cooperative localization has been shown to improve the localization accuracy of all the UAVs in a network even in global navigation satellite system (GNSS) challenging environments, not all UAVs in a network can achieve equal navigational performance. The objective of this paper is to analyze the various parameters that affect the performance of UAVs in a cooperative network. This paper derives the theoretical performance bound of the localization accuracy that can be achieved by any UAV in the network. This performance bound is derived using posterior Cramér Rao bound and is further used to analyze the effects of various parameters such as network geometry and connectivity, quality of available measurements and the availability of GNSS in the network. Through this analysis, the limitations and the benefits of a cooperative UAV swarm for any application (such as mapping or remote sensing) are presented.

Keywords

Cooperative localization PCRB Cramér Rao bounds UAV Ultra-wide band 

References

  1. Blanks, A., Vincent, J., & Phalp, K. (2008). Particle swarm guidance system for autonomous unmanned aerial vehicles in an air defence role. Journal of Navigation, 61(01), 9–29.Google Scholar
  2. Crocker, R. I., Maslanik, J. A., Adler, J. J., Palo, S. E., Herzfed, U. C., & Emery, W. J. (2012). A sensor package for ice surface observations using small unmanned aircraft systems. IEEE Transactions on Geoscience and Remote Sensing, 50(4), 1033–1047.CrossRefGoogle Scholar
  3. Gabela, J., Goel, S., Kealy, A., Hedley, M., Moran, B., & Williams, S. (2018). Cramér Rao bound analysis for cooperative positioning in intelligent transportation systems. In Proceedings of the international global navigation satellite systems (IGNSS) conference, February 7–9, 2018, Sydney, Australia. Available at: http://www.ignss2018.unsw.edu.au/sites/ignss2018/files/u80/Papers/IGNSS2018_paper_21.pdf. Accessed 28 October 2018.
  4. Gabrlik, P., La Cour-Harbo, A., Kalvodova, P., Zalud, L., & Janata, P. (2018). Calibration and accuracy assessment in a direct georeferencing system for UAV photogrammetry. International Journal of Remote Sensing, 39(15–16), 4931–4959.  https://doi.org/10.1080/01431161.2018.1434331.CrossRefGoogle Scholar
  5. Goel, S. (2017). A distributed cooperative UAV swarm localization system: Development and analysis. In Proceedings of the 30th international technical meeting of the satellite division of the institute of navigation (ION GNSS+ 2017), Portland, Oregon, September 25–29, 2017 (pp. 2501–2518).Google Scholar
  6. Goel, S., Kealy, A., Gikas, V., Retscher, G., Toth, C., Brzezinska, D., et al. (2017). Cooperative localization of unmanned aerial vehicles using GNSS, MEMS inertial and UWB sensors. Journal of Surveying Engineering, 13(4), 04017007.  https://doi.org/10.1061/(asce)su.1943-5428.0000230.CrossRefGoogle Scholar
  7. Goel, S., Kealy, A., & Lohani, B. (2016). Cooperative UAS localization using low cost sensors. ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences, 3(1), 183–190.CrossRefGoogle Scholar
  8. Goel, S., Kealy, A., & Lohani, B. (2018). Development and experimental evaluation of a low-cost cooperative UAV localization network prototype. Journal of Sensor and Actuator Networks., 7(4), 42.  https://doi.org/10.3390/jsan7040042.CrossRefGoogle Scholar
  9. Gurtner, A., Greer, D. G., Glassrock, R., Mejias, L., Walker, R. A., & Boles, W. W. (2009). Investigation of fish-eye lenses for small-UAV aerial photography. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 709–721.CrossRefGoogle Scholar
  10. Hafskjold, B. H., Jalving, B., Hagen, P. E., & Gade, K. (2000). Integrated camera-based navigation. Journal of Navigation, 53(02), 237–245.CrossRefGoogle Scholar
  11. Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory (Vol. 1(4), p. 513). Englewood Cliffs, NJ: Prentince Hall.Google Scholar
  12. Larsson, E. G. (2004). Cramér-Rao bound analysis of distributed positioning in sensor networks. IEEE Signal Processing Letters, 11(3), 334–337.CrossRefGoogle Scholar
  13. Mourikis, A. I., & Roumeliotis, S. I. (2006). Performance analysis of multirobot cooperative localization. IEEE Transactions on Robotics, 22(4), 666–681.CrossRefGoogle Scholar
  14. Penna, F., Caceres, M. A., & Wymeersch, H. (2010). Cramér Rao bound for hybrid GNSS-terrestrial cooperative positioning. IEEE Communications Letters, 14(11), 1005–1007.CrossRefGoogle Scholar
  15. Spletzer, J., Das, A. K., Fierro, R., Taylor, C. J., Kumar, V., & Ostrowski, J. P. (2001). Cooperative localization and control for multi-robot manipulation. In Intelligent robots and systems (pp. 631–636).Google Scholar
  16. Taylor, J. H. (1978). The Cramér Rao estimation error lower bound computation for deterministic nonlinear systems. In IEEE conference on decision and control (Vol. 17, pp. 343–344).Google Scholar
  17. Taylor Jr, R. M., Flanagan, B. P., & Uber, J. A. (2003). Computing the recursive posterior Cramér Rao bound for a nonlinear nonstationary system. In Proceedings of IEEE international conference on acoustics, speech and signal processing, April 6–10 (pp. 673–676).Google Scholar
  18. Tichavsky, P., Muravchik, C., & Nehorai, A. (1998). Posterior Cramér Rao bounds for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing, 40, 1386–1396.CrossRefGoogle Scholar
  19. Turner, D., Lucieer, A., & Wallace, L. (2014). Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2738–2745.CrossRefGoogle Scholar
  20. Uto, K., Seki, H., & Saito, G. (2013). Characterization of rice paddies by a UAV-mounted miniature hyperspectral sensor system. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 851–860.CrossRefGoogle Scholar
  21. Wallace, L., Musk, R., & Lucieer, A. (2014). An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 71607169.CrossRefGoogle Scholar
  22. Wang, W., Peng, Q., & Cai, J. (2009). Waveform-diversity-based millimeter-wave UAV SAR remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 691–700.CrossRefGoogle Scholar
  23. Wymeersch, H., Lien, J., & Win, M. Z. (2009). Cooperative localization in wireless networks. Proceedings of the IEEE, 97(2), 427–450.  https://doi.org/10.1109/JPROC.2008.2008853.CrossRefGoogle Scholar
  24. Xing, M., Jiang, X., Wu, R., Zhou, F., & Bao, Z. (2009). Motion compensation for UAV SAR based on raw radar data. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2870–2883.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2018

Authors and Affiliations

  1. 1.Geoinformatics Laboratory, Department of Civil EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Geospatial ScienceRMIT UniversityMelbourneAustralia

Personalised recommendations