Advertisement

Ship Classification in SAR Images Using a New Hybrid CNN–MLP Classifier

  • Foroogh Sharifzadeh
  • Gholamreza AkbarizadehEmail author
  • Yousef Seifi Kavian
Research Article
  • 104 Downloads

Abstract

Ship detection on the SAR images for marine monitoring has a wide usage. SAR technology helps us to have a better monitoring over intended sections, without considering atmospheric conditions, or image shooting time. In recent years, with advancements in convolutional neural network (CNN), which is one of the well-known ways of deep learning, using image deep features has increased. Recently, usage of CNN for SAR image segmentation has been increased. Existence of clutter edge, multiple interfering targets, speckle and sea-level clutters makes false alarms and false detections on detector algorithms. In this letter, constant false alarm rate is used for object recognition. This algorithm, processes the image pixel by pixel, and based on statistical information of its neighbor pixels, detects the targeted pixels. Afterward, a neural network with hybrid algorithm of CNN and multilayer perceptron (CNN–MLP) is suggested for image classification. In this proposal, the algorithm is trained with real SAR images from Sentinel-1 and RADARSAT-2 satellites, and has a better performance on object classification than state of the art.

Keywords

SAR image processing Synthetic aperture radar (SAR) Classification Ship classification Neural network Convolution neural network (CNN) Multilayer perceptron (MLP) Hybrid CNN–MLP 

Notes

Acknowledgements

Funding was provided by Shahid Chamran University of Ahvaz (Grant No. 96/3/02/16670).

References

  1. Akbarizadeh, G., & Tirandaz, Z. (2015). Segmentation parameter estimation algorithm based on curvelet transform coefficients energy for feature extraction and texture description of SAR images. In 2015 7th conference on information and knowledge technology (IKT) (pp. 1–4).Google Scholar
  2. Ampe, E. M., Vanhamel, I., Salvadore, E., Dams, J., Bashir, I., Demarchi, L., et al. (2012). Impact of urban land-cover classification on groundwater recharge uncertainty. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(6), 1859–1867.CrossRefGoogle Scholar
  3. Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning—A new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 5(4), 13–18.CrossRefGoogle Scholar
  4. Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1–127.CrossRefGoogle Scholar
  5. Bentes, C., Frost, A., Velotto, D., & Tings, B. (2016). Ship-iceberg discrimination with convolutional neural networks in high resolution SAR images. In Proceedings of EUSAR 2016: 11th European conference on synthetic aperture radar (pp. 1–4).Google Scholar
  6. Bentes, C., Velotto, D., & Lehner, S. (2015). Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results. In 2015 IEEE International on geoscience and remote sensing symposium (IGARSS) (pp. 3703–3706).Google Scholar
  7. Bentes, C., Velotto, D., & Tings, B. (2018). Ship classification in terrasar-x images with convolutional neural networks. IEEE Journal of Oceanic Engineering, 43(1), 258–266.CrossRefGoogle Scholar
  8. Bezak, P., Bozek, P., & Nikitin, Y. (2014). Advanced robotic grasping system using deep learning. Procedia Engineering, 96, 10–20.CrossRefGoogle Scholar
  9. Chen, S., Wang, H., Xu, F., & Jin, Y.-Q. (2016). Target classification using the deep convolutional networks for SAR images. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4806–4817.CrossRefGoogle Scholar
  10. Ding, J., Chen, B., Liu, H., & Huang, M. (2016). Convolutional neural network with data augmentation for SAR target recognition. IEEE Geoscience and Remote Sensing Letters, 13(3), 364–368.Google Scholar
  11. Doulgeris, A. P. (2015). An automatic U-distribution and Markov random field segmentation algorithm for PolSAR images. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 1819–1827.CrossRefGoogle Scholar
  12. Doulgeris, A. P., Anfinsen, S. N., & Eltoft, T. (2011). Automated non-Gaussian clustering of polarimetric synthetic aperture radar images. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3665–3676.CrossRefGoogle Scholar
  13. Frost, A., Ressel, R., & Lehner, S. (2015). Iceberg detection over northern latitudes using high resolution TerraSAR-X images. In 36th Canadian symposium of remote sensing-abstracts (pp. 1–8).Google Scholar
  14. Gao, G., Liu, L., Zhao, L., Shi, G., & Kuang, G. (2009). An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing, 47(6), 1685–1697.CrossRefGoogle Scholar
  15. Geng, J., Fan, J., Wang, H., Ma, X., Li, B., & Chen, F. (2015). High-resolution SAR image classification via deep convolutional autoencoders. IEEE Geoscience and Remote Sensing Letters, 12(11), 2351–2355.CrossRefGoogle Scholar
  16. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580–587).Google Scholar
  17. Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.CrossRefGoogle Scholar
  18. Hou, B., Kou, H., & Jiao, L. (2016). Classification of polarimetric SAR images using multilayer autoencoders and superpixels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7), 3072–3081.CrossRefGoogle Scholar
  19. Hwang, S.-I., & Ouchi, K. (2010). On a novel approach using MLCC and CFAR for the improvement of ship detection by synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters, 7(2), 391–395.CrossRefGoogle Scholar
  20. Jakeman, E., & Pusey, P. (1976). A model for non-Rayleigh sea echo. IEEE Transactions on Antennas and Propagation, 24(6), 806–814.CrossRefGoogle Scholar
  21. Lang, H., Zhang, J., Zhang, X., & Meng, J. (2016). Ship classification in SAR image by joint feature and classifier selection. IEEE Geoscience and Remote Sensing Letters, 13(2), 212–216.CrossRefGoogle Scholar
  22. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.CrossRefGoogle Scholar
  23. Leng, X., Ji, K., Yang, K., & Zou, H. (2015). A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geoscience and Remote Sensing Letters, 12(7), 1536–1540.CrossRefGoogle Scholar
  24. Lombardo, P., & Sciotti, M. (2001). Segmentation-based technique for ship detection in SAR images. IEE Proceedings—Radar, Sonar and Navigation, 148(3), 147–159.CrossRefGoogle Scholar
  25. Lv, Q., Dou, Y., Niu, X., Xu, J., Xu, J., & Xia, F. (2015). Urban land use and land cover classification using remotely sensed SAR data through deep belief networks. Journal of Sensors, 2015, 1–10.CrossRefGoogle Scholar
  26. Makedonas, A., Theoharatos, C., Tsagaris, V., Anastasopoulos, V., & Costicoglou, S. (2015). Vessel classification in Cosmo-SkyMed SAR data using hierarchical feature selection. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 975.CrossRefGoogle Scholar
  27. Mazzarella, F., Vespe, M., & Santamaria, C. (2015). SAR ship detection and self-reporting data fusion based on traffic knowledge. IEEE Geoscience and Remote Sensing Letters, 12(8), 1685–1689.CrossRefGoogle Scholar
  28. Modava, M., & Akbarizadeh, G. (2017). Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method. International Journal of Remote Sensing, 38(2), 355–370.CrossRefGoogle Scholar
  29. Pacifici, F., Chini, M., & Emery, W. J. (2009). A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sensing of Environment, 113(6), 1276–1292.CrossRefGoogle Scholar
  30. Romero, A., Gatta, C., & Camps-Valls, G. (2016). Unsupervised deep feature extraction for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1349–1362.CrossRefGoogle Scholar
  31. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.CrossRefGoogle Scholar
  32. Schwegmann, C. P., Kleynhans, W., Salmon, B. P., Mdakane, L. W., & Meyer, R. G. V. (2017). A SAR ship dataset for detection, discrimination and analysis. IEEE Dataport. https://doi.org/10.21227/H2RK82.Google Scholar
  33. Srinivas, U., Monga, V., & Raj, R. G. (2014). SAR automatic target recognition using discriminative graphical models. IEEE Transactions on Aerospace and Electronic Systems, 50(1), 591–606.CrossRefGoogle Scholar
  34. Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.CrossRefGoogle Scholar
  35. Tang, J., Deng, C., Huang, G.-B., & Zhao, B. (2015). Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1174–1185.CrossRefGoogle Scholar
  36. Tao, D., Anfinsen, S. N., & Brekke, C. (2016a). Robust CFAR detector based on truncated statistics in multiple-target situations. IEEE Transactions on Geoscience and Remote Sensing, 54(1), 117–134.CrossRefGoogle Scholar
  37. Tao, D., Doulgeris, A. P., & Brekke, C. (2016b). A segmentation-based CFAR detection algorithm using truncated statistics. IEEE Transactions on Geoscience and Remote Sensing, 54(5), 2887–2898.CrossRefGoogle Scholar
  38. Wang, M., Fei, X., Zhang, Y., Chen, Z., Wang, X., Tsou, J. Y., et al. (2018). Assessing texture features to classify coastal wetland vegetation from high spatial resolution imagery using completed local binary patterns (CLBP). Remote Sensing, 10(5), 778.CrossRefGoogle Scholar
  39. Watts, S. (1987). Radar detection prediction in K-distributed sea clutter and thermal noise. IEEE Transactions on Aerospace and Electronic Systems, 23, 40–45.CrossRefGoogle Scholar
  40. Weiss, M. (1982). Analysis of some modified cell-averaging CFAR processors in multiple-target situations. IEEE Transactions on Aerospace and Electronic Systems, 18, 102–114.CrossRefGoogle Scholar
  41. Wilmanski, M., Kreucher, C., & Lauer, J. (2016). Modern approaches in deep learning for SAR ATR. In Algorithms for synthetic aperture radar imagery XXIII (p. 98430 N).Google Scholar
  42. Wu, F., Wang, C., Jiang, S., Zhang, H., & Zhang, B. (2015). Classification of vessels in single-pol COSMO-SkyMed images based on statistical and structural features. Remote Sensing, 7(5), 5511–5533.CrossRefGoogle Scholar
  43. Yang, X., Qian, X., & Mei, T. (2015). Learning salient visual word for scalable mobile image retrieval. Pattern Recognition, 48(10), 3093–3101.CrossRefGoogle Scholar
  44. Yueh, S. H., Kong, J. A., Jao, J. K., Shin, R. T., & Novak, L. M. (1989). K-distribution and polarimetric terrain radar clutter. Journal of Electromagnetic Waves and Applications, 3(8), 747–768.CrossRefGoogle Scholar
  45. Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., et al. (2017). A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 133–144.CrossRefGoogle Scholar
  46. Zhao, W., & Du, S. (2016). Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4544–4554.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran

Personalised recommendations