Advertisement

A Comparative Study of Machine Learning Techniques to Simulate Land Use Changes

  • Mohammad Ahmadlou
  • Mahmoud Reza Delavar
  • Anahid Basiri
  • Mohammad Karimi
Research Article

Abstract

Design and development of a practical land use change (LUC) model require both a high prediction accuracy, to predict the future changes, and a well-fitted model reflecting and monitoring real world. In this regard, many models follow the three phases: training, testing and validating, in the modelling process to maximise both the accuracy and fitness. Therefore, the choice of model for different applications is still a valid and important question. This paper applies and compares three widely used data mining models: classification and regression tree (CART), multivariate adaptive regression spline (MARS) and random forest (RF), to simulate urban LUCs of Shirgah in Iran. The results of these three phases for the three models: CART, MARS and RF, for the study area of Shirgah, in the north of Iran, verify that having the highest accuracy in the testing run does not necessarily guarantee the highest accuracy in the validating run. And so, with respect to the purpose of each project, such as modelling the current situation or predicting the future, the best model with the highest accuracy at the relevant phase or a combination of some/all should be selected. For example, in this study, MARS can provide the best accuracy in the validating run while the lowest level of accuracy in the testing run. RF provides the highest accuracy in the testing run and the lowest level of accuracy in the validating run.

Keywords

Land use changes Classification and regression tree Multivariate adaptive regression spline Random forest Total operating characteristics 

References

  1. Ahmadlou, M., & Delavar, M. (2015). Multiple land use change modeling using multivariate adaptive regression spline and geospatial information system. Journal of Geomatics Science and Technology, 5(2), 131–146.Google Scholar
  2. Ahmadlou, M., Delavar, M., Shafizadeh-Moghadam, H., & Tayyebid, A. (2016a). Modeling urban dynamics using random forest: Implementing roc and toc for model evaluation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 285–290). Prague, Czech RepublicGoogle Scholar
  3. Ahmadlou, M., Delavar, M., & Tayyebi, A. (2016b). Comparing ANN and CART to model multiple land use changes: A case study of Sari and Ghaem-Shahr cities in Iran. Journal of Geomatics Science and Technology, 6(1), 292–303.Google Scholar
  4. Ahmadlou, M., Delavar, M., Tayyebi, A., & Shafizadeh-Moghadam, H. (2015). Using multivariate adaptive regression spline and artificial neural network to simulate urbanization in Mumbai, India. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), 31.CrossRefGoogle Scholar
  5. Berberoğlu, S., Akın, A., & Clarke, K. C. (2016). Cellular automata modeling approaches to forecast urban growth for Adana, Turkey: A comparative approach. Landscape and Urban Planning, 153, 11–27.CrossRefGoogle Scholar
  6. Biro, K., Pradhan, B., Buchroithner, M., & Makeschin, F. (2013). Land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan. Land Degradation & Development, 24(1), 90–102.CrossRefGoogle Scholar
  7. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.CrossRefGoogle Scholar
  8. Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification algorithms and regression trees. Boca Raton: CRC Press.Google Scholar
  9. Cheng, J., & Masser, I. (2003). Urban growth pattern modeling: a case study of Wuhan city, PR China. Landscape and Urban Planning, 62(4), 199–217.CrossRefGoogle Scholar
  10. Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213.CrossRefGoogle Scholar
  11. Cuo, L., Zhang, Y., Gao, Y., Hao, Z., & Cairang, L. (2013). The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. Journal of Hydrology, 502, 37–52.CrossRefGoogle Scholar
  12. Dai, F., Lee, C., & Zhang, X. (2001). GIS-based geo-environmental evaluation for urban land-use planning: A case study. Engineering Geology, 61(4), 257–271.CrossRefGoogle Scholar
  13. De Baan, L., Alkemade, R., & Koellner, T. (2013). Land use impacts on biodiversity in LCA: A global approach. The International Journal of Life Cycle Assessment, 18(6), 1216–1230.CrossRefGoogle Scholar
  14. Fridedman, J. (1991). Multivariate adaptive regression splines (with discussion). The Annals of Statistics, 19(1), 79–141.Google Scholar
  15. Friedman, J. H., & Silverman, B. W. (1989). Flexible parsimonious smoothing and additive modeling. Technometrics, 31(1), 3–21.CrossRefGoogle Scholar
  16. Han, J., Hayashi, Y., Cao, X., & Imura, H. (2009). Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China. Landscape and Urban Planning, 91(3), 133–141.CrossRefGoogle Scholar
  17. Hu, Z., & Lo, C. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667–688.CrossRefGoogle Scholar
  18. Jantz, S. M., Barker, B., Brooks, T. M., Chini, L. P., Huang, Q., Moore, R. M., et al. (2015). Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conservation Biology, 29(4), 1122–1131.CrossRefGoogle Scholar
  19. Kamusoko, C., & Gamba, J. (2015). Simulating urban growth using a random forest-cellular automata (RF-CA) model. ISPRS International Journal of Geo-Information, 4(2), 447–470.CrossRefGoogle Scholar
  20. Koellner, T., & Geyer, R. (2013). Global land use impact assessment on biodiversity and ecosystem services in LCA. The International Journal of Life Cycle Assessment, 18(6), 1185–1187.CrossRefGoogle Scholar
  21. Marshall, J. D., McKone, T. E., Deakin, E., & Nazaroff, W. W. (2005). Inhalation of motor vehicle emissions: Effects of urban population and land area. Atmospheric Environment, 39(2), 283–295.CrossRefGoogle Scholar
  22. Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: A review of applications. Landscape Ecology, 22(10), 1447–1459.CrossRefGoogle Scholar
  23. Mengistu, D. A., & Waktola, D. K. (2016). Monitoring land use/land cover change impacts on soils in data scarce environments: A case of south-central Ethiopia. Journal of Land Use Science, 11(1), 96–112.CrossRefGoogle Scholar
  24. Olson, D. L., Shi, Y., & Shi, Y. (2007). Introduction to business data mining (Vol. 10). Englewood Cliffs: McGraw-Hill/Irwin.Google Scholar
  25. Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: A land transformation model. Computers, Environment and Urban Systems, 26(6), 553–575.CrossRefGoogle Scholar
  26. Pontius, R. G., Jr., & Batchu, K. (2003). Using the relative operating characteristic to quantify certainty in prediction of location of land cover change in India. Transactions in GIS, 7(4), 467–484.CrossRefGoogle Scholar
  27. Pontius, R. G., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Dietzel, C., et al. (2008). Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science, 42(1), 11–37.CrossRefGoogle Scholar
  28. Pontius, R., Jr., & Schneider, L. (2001). Land-use change model validation by a ROC (relative operating characteristic) method. Agriculture, Ecosystems & Environment, 85, 239–248.CrossRefGoogle Scholar
  29. Pontius, R. G., Jr., & Si, K. (2014). The total operating characteristic to measure diagnostic ability for multiple thresholds. International Journal of Geographical Information Science, 28(3), 570–583.CrossRefGoogle Scholar
  30. Rykiel, E. J., Jr. (1996). Testing ecological models: The meaning of validation. Ecological Modelling, 90(3), 229–244.CrossRefGoogle Scholar
  31. Shafizadeh-Moghadam, H., Tayyebi, A., Ahmadlou, M., Delavar, M. R., & Hasanlou, M. (2017). Integration of genetic algorithm and multiple kernel support vector regression for modeling urban growth. Computers, Environment and Urban Systems, 65, 28–40.CrossRefGoogle Scholar
  32. Shan, J., Alkheder, S., & Wang, J. (2008). Genetic algorithms for the calibration of cellular automata urban growth modeling. Photogrammetric Engineering & Remote Sensing, 74(10), 1267–1277.CrossRefGoogle Scholar
  33. Tayyebi, A., Pijanowski, B. C., Linderman, M., & Gratton, C. (2014). Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world. Environmental Modelling and Software, 59, 202–221.CrossRefGoogle Scholar
  34. Tong, S. T., Sun, Y., Ranatunga, T., He, J., & Yang, Y. J. (2012). Predicting plausible impacts of sets of climate and land use change scenarios on water resources. Applied Geography, 32(2), 477–489.CrossRefGoogle Scholar
  35. van Vliet, J., Bregt, A. K., Brown, D. G., van Delden, H., Heckbert, S., & Verburg, P. H. (2016). A review of current calibration and validation practices in land-change modeling. Environmental Modelling and Software, 82, 174–182.CrossRefGoogle Scholar
  36. Wahyudi, A., & Liu, Y. (2016). Cellular automata for urban growth modelling. International Review for Spatial Planning and Sustainable Development, 4(2), 60–75.CrossRefGoogle Scholar
  37. Xu, C., Liu, M., An, S., Chen, J., & Yan, P. (2007). Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China. Journal of Environmental Management, 85(3), 597–606.CrossRefGoogle Scholar
  38. Yang, Q., Li, X., & Shi, X. (2008). Cellular automata for simulating land use changes based on support vector machines. Computers & Geosciences, 34(6), 592–602.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2018

Authors and Affiliations

  • Mohammad Ahmadlou
    • 1
  • Mahmoud Reza Delavar
    • 2
  • Anahid Basiri
    • 3
  • Mohammad Karimi
    • 1
  1. 1.GIS Department, Geodesy and Geomatics FacultyK.N. Toosi University of TechnologyTehranIran
  2. 2.Center of Excellence in Geomatics Engineering in Disaster Management, School of Surveying and Geospatial Engineering, College of EngineeringUniversity of TehranTehranIran
  3. 3.Centre for Advanced Spatial AnalysisUniversity College LondonLondonUK

Personalised recommendations