Journal of the Indian Society of Remote Sensing

, Volume 46, Issue 11, pp 1761–1771 | Cite as

Satellite/Aerial Image Compression Using Adaptive Block Truncation Coding Technique

  • Binu Balakrishnan
  • S. H. Darsana
  • Jayamol Mathews
  • Madhu S. NairEmail author
Research Article


Satellite/aerial images taken from high altitude contain large amount of pixels to store accurate information. These high resolution images require large storage capacity and more transmission time. Applying an efficient compression technique on these images can reduce high storage capacity requirement and transmission time. In this paper block truncation coding (BTC) based color image compression technique for aerial/satellite images is proposed. High degree of correlation among the RGB planes of a color image can be reduced by converting these planes into HSV planes. Each of the H and S planes are encoded using BTC with quad clustering and V plane is encoded with BTC based bi-clustering or tri-clustering depending on the edge information present in the plane. The effectivity of the proposed method is validated by comparing it with the conventional BTC and its variant methods. Experimental analysis indicate that the proposed method is superior to other state of the art methods both in terms of visual quality and quantitative metrics.


Image compression Block truncation coding HSV color model Clustering Aerial images 


  1. Amarunnishad, T. M., Govindan, V. K., & Abraham, T. M. (2006). A fuzzy complement edge operator. In IEEE proceedings of the fourteenth international conference on advanced computing and communications, Mangalore, Karnataka, India.Google Scholar
  2. Amarunnishad, T. M., Govindan, V. K., & Abraham, T. M. (2008). Improving BTC image compression using a fuzzy complement edge operator. IEEE Signal Processing Letters, 88(12), 2989–97.Google Scholar
  3. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–98.CrossRefGoogle Scholar
  4. Delp, E. J., & Mitchell, O. R. (1979). Image compression using block truncation coding. IEEE Transactions on Communication, 27(9), 1335–42.CrossRefGoogle Scholar
  5. Desai, U. Y., Mizuki, M. M., Masaki, I., & Horn, B. K. P. (1996). Edge and mean based compression. Cambridge: MIT Artificial Intelligence Laboratory.Google Scholar
  6. Eskicioglu, A. M., & Fisher, P. S. (1995). Image quality measures and their performance. IEEE Transactions on Communications, 34(12), 2959–65.CrossRefGoogle Scholar
  7. Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd ed., pp. 526–527). Upper Saddle River: Prentice Hall.Google Scholar
  8. Kanungo, T., Mount, D. M., Netanyahu, N., Piatko, C., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892.CrossRefGoogle Scholar
  9. Khalid, S. (2005). Introduction to data compression (3rd ed.). Oxfod: Butterworth-Heineman.Google Scholar
  10. Lema, M. D., & Mitchell, O. R. (1994). Absolute moment block truncation coding and its application to color image. IEEE Transactions on Communication, 32(10), 1148–1157.CrossRefGoogle Scholar
  11. Mathews, J., Nair, M. S., & Jo, L. (2012). Improved BTC algorithm for gray scale images using k-means quad clustering. In The 19th international conference on neural information processing-ICONIP. Lecture notes in computer science (LNCS), Vol. 7666, pp. 9–17.CrossRefGoogle Scholar
  12. Mathews, J., Nair, M. S., & Jo, L. (2013). Modified BTC algorithm for gray scale images using max–min quantizer. In International multi conference on automation, computing, control, communication and compressed sensing-iMac4s, Vol. 10, pp. 377–382.Google Scholar
  13. Mathews, J., Nair, M. S., & Jo, L. (2014). A novel color image coding technique using improved BTC with k-means quad clustering. In International symposium on signal processing and intelligent recognition systems-SIRS2014. Advances in intelligent systems and computing, pp. 347–357.Google Scholar
  14. Mathews, J., Nair, M. S., & Jo, L. (2015). Adaptive block truncation coding technique using edge-based qantization approach. Computers and Electrical Engineering, 43, 169–179.CrossRefGoogle Scholar
  15. Vellaikal, A., Jay Kuo, C., & Dao, S. (1996). Content-based retieval of colour and multispectral images using joint spatial-spectral indexing. SPIE, 2606, 232–243.Google Scholar
  16. Wang, J., Min, K. Y., Jeung, Y. C., & Chong, J. W. (2009). Improved BTC using luminance bitmap for color image compression. In 2nd international congress on image and signal processing, pp. 1–5.Google Scholar
  17. Yamsang, N., & Udomhunsakul, S. (2009). Image quality scale (IQS) for compressed images quality measurement. In Proceedings of the international multiconference of engineers and computer scientists, Vol. 1, pp. 789–794.Google Scholar

Copyright information

© Indian Society of Remote Sensing 2018

Authors and Affiliations

  • Binu Balakrishnan
    • 1
  • S. H. Darsana
    • 1
  • Jayamol Mathews
    • 1
  • Madhu S. Nair
    • 2
    Email author
  1. 1.Department of Computer ScienceUniversity of KeralaKariavattom, ThiruvananthapuramIndia
  2. 2.Department of Computer ScienceCochin University of Science and TechnologyKochiIndia

Personalised recommendations