Utilities of Virtual 3D City Models Based on CityGML: Various Use Cases

  • Sameer SaranEmail author
  • Kapil Oberai
  • Parag Wate
  • Amol Konde
  • Arnab Dutta
  • Kavisha Kumar
  • A. Senthil Kumar
Research Article


Virtual 3D city models are increasingly being used to model the realms of the real world for utilization in a number of applications related to environmental simulations including, urban planning, mapping the energy characteristics of buildings, noise mapping, flood modelling, etc. Apart from geometric and appearance/textural information, these applications have a requirement for complex urban semantics. Currently, a number of 3D standards are available in CAD, BIM and GIS related domains for the storage, visualization and transfer of 3D geospatial datasets. Initially, the 3D data models (such as COLLADA, VRML, X3D, etc.) were purely graphical/geometrical in nature and mainly used for visualization purposes. With the inclusion of thematic modules in OGC CityGML, the integration of geometry and semantics in a single data model paved the way for better sharing of virtual 3D city models. In spite of the availability of a wide range of 3D data standards, there are certain differences with respect to geometry, topology, semantics, LODs, etc., which complicates the integration of 3D geodata from heterogeneous sources. This paper serves to highlights the need for the innovative solutions with respect to the urban environmental related simulations primarily based on the use of virtual 3D city models. Four use cases are studied in this context namely, (1) urban solar potential estimation using CityGML models, (2) simulation of traffic noise level mapped on building walls from the urban road segments, (3) CityGML based 3D data models interoperability, and (4) 3D indoor logistics and subsurface utilities. However, for modelling majority of use cases, CityGML does not provide explicit thematic representations but provides support for extending the CityGML schema using Application Domain Extensions. In a nutshell, the study explores the semantic modelling capabilities of the CityGML for the transformation of native 3D virtual city models to one satisfying capabilities like semantic information and support towards interoperability.


CityGML 3D modelling GIS 3D standards Interoperability Traffic noise 


  1. Benner, J., Geiger, A., Gröger, G., Häfele, K. H., & Löwner, M. O. (2013). Enhanced LOD concepts for virtual 3D city models. In ISPRS annals of the photogrammetry, remote sensing and spatial information sciences. Proceedings of the ISPRS 8th 3D GeoInfo conference & WG II/2 workshop (pp. 51–61).Google Scholar
  2. Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4(4), 2842–2889.CrossRefGoogle Scholar
  3. Calixto, A., Diniz, F. B., & Zannin, P. H. (2003). The statistical modeling of road traffic noise in an urban setting. Cities, 20(1), 23–29.CrossRefGoogle Scholar
  4. Carrión, D., Lorenz, A., & Kolbe, T. H. (2010). Estimation of the energetic rehabilitation state of buildings for the city of Berlin using a 3D city model represented in CityGML. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 31–35.Google Scholar
  5. Czerwinski, A., Sandmann, S., Stöcker-Meier, E., & Plümer, L. (2007). Sustainable SDI for EU noise mapping in NRW-best practice for INSPIRE. IJSDIR, 2, 90–111. Accessed May 12, 2017.
  6. Döllner, J., Kolbe, T. H., Liecke, F., Sgouros, T., & Teichmann, K. (2006). The virtual 3d city model of berlin-managing, integrating, and communicating complex urban information. In Proceedings of the 25th urban data management symposium UDMS (Vol. 2006, pp. 15–17). Accessed May 12, 2017.
  7. Gröger, G., Kolbe, T. H., Nagel, C., & Hafele, K. H. (2012). OpenGIS city geography markup language (CityGML) encoding standard (OGC 12-019). Version 2.0. 0. OGC 12-019. Open Geospatial Consortium. Accessed 12 May 2017.
  8. INC, A. G. (2015). Cesium-WebGL virtual globe and map engine. Retrieved January 17, 2015.Google Scholar
  9. Kaden, R., & Kolbe, T. H. (2013). City-wide total energy demand estimation of buildings using semantic 3D city models and statistical data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, W1. Accessed May 12, 2017.
  10. Kolbe, T. H., Gröger, G., & Plümer, L. (2005). CityGML: Interoperable access to 3D city models. In P. van Oosterom, S. Zlatanova, E. M. Fendel (Eds.) Geo-information for disaster management (pp. 883–899). Springer, Berlin.Google Scholar
  11. Kolbe, T. H., Gröger, G., & Plümer, L. (2008). CityGML–3D city models and their potential for emergency response. In S. Zlatanova, J. Li (eds) Geospatial Information Technology for Emergency Response, (pp. 257–276), Taylor & Francis, London.Google Scholar
  12. Köninger, A., & Bartel, S. (1998). 3D-GIS for urban purposes. Geoinformatica, 2(1), 79–103.CrossRefGoogle Scholar
  13. Krüger, A., & Kolbe, T. H. (2012). Building analysis for urban energy planning using key indicators on virtual 3D city models—The energy atlas of Berlin. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(B2), 145–150.CrossRefGoogle Scholar
  14. Kumar, K. (2015). CityGML based interoperability for the transformation of 3D data models (Master’s Thesis).
  15. Kunde, F., Asche, H., Kolbe, T. H., Nagel, C., Herreruela, J., & König, G. (2013). 3D city database for CityGML—3D city database version 2.0.6-postgis, importer/exporter version 1.5.0-postgis. Tutorial, Release Version, Department of Geography—University of Potsdam, Institute for Geodesy and Geoinformation Science—Technische Universität Berlin, Berlin, Germany. Accessed May 12, 2017.
  16. Lamure C. (1986). Road traffic noise: Generation, propagation and control. In: Noise pollution effects and control. New York: Wiley (pp. 297–342). Accessed May 12, 2017.
  17. Lee, J., & Zlatanova, S. (2008). A 3D data model and topological analyses for emergency response in urban areas. Geospatial Information Technology for Emergency Response, 143, C168.Google Scholar
  18. Li, R. (1994). Data structures and application issues 3D geographic information systems. Geomatica, 48(3), 209–224.Google Scholar
  19. McHenry, K., & Bajcsy, P. (2008). An overview of 3d data content, file formats and viewers. National Center for Supercomputing Applications1205, 22. Accessed May 12, 2017.
  20. Murali, T. M., & Funkhouser, T. A. (1997). Consistent solid and boundary representations from arbitrary polygonal data. In Proceedings of the 1997 symposium on Interactive 3D graphics (pp. 155-ff). ACM. Accessed May 12, 2017.
  21. Ross, L. (2010). Virtual 3D city models in urban land management-technologies and applications (Doctoral dissertation).
  22. Saran, S., Wate, P., Srivastav, S. K., & Krishna Murthy, Y. V. N. (2015). CityGML at semantic level for urban energy conservation strategies. Annals of GIS, 21(1), 27–41.CrossRefGoogle Scholar
  23. Schell, D., McKee, L., & Buehler, K. (2000). Geodata interoperability—A key NII requirement. White paper submitted to the NII 2000 Steering Committee of the Computer Science and Telecommunications Board of the National Research Council. Accessed May 12, 2017.
  24. Schulte, C., & Coors, V. (2009). Development of a CityGML ADE for dynamic 3D flood information. AGSE, 2009, 10.Google Scholar
  25. Sokolov, I., & Crosby, J. (2011). Utilizing gbXML with AECOsim Building Designer and speedikon. Accessed May 12, 2017.
  26. Stadler, A., & Kolbe, T. H. (2007). Spatio-semantic coherence in the integration of 3D city models. In Proceedings of the 5th international symposium on spatial data quality, enschede. Accessed May 12, 2017.
  27. Stoter, J., van den Brink, L., Vosselman, G., Goos, J., Zlatanova, S., Verbree, E., & Thorn, S. (2011). A generic approach for 3D SDI in the Netherlands. In Proceedings of the joint ISPRS workshop on 3D city modelling & applications and the 6th 3D GeoInfo conference Wuhan, China (pp. 26–28). Accessed May 12, 2017.
  28. Thein, V. (2011). Industry Foundation Classes (IFC), BIM interoperability through a vendor-independent file format. Bentley Sustaining Infrastructure, USA. Accessed May 12, 2017.
  29. Wate, P., Saran, S., Srivastav, S. K., & Murthy, Y. K. (2013). Formulation of hierarchical framework for 3D-GIS data acquisition techniques in context of Level-of-Detail (LOD). In 2013 IEEE second international conference on image information processing (ICIIP). IEEE, pp. 154–159.Google Scholar
  30. Xu, X., Ding, L., Luo, H., & Ma, L. (2014). From building information modeling to city information modeling. Journal of Information Technology in Construction (ITcon), 19(17), 292–307. Accessed May 12, 2017.
  31. Zhang, Y., Zhu, Q., Liu, G., Zheng, W., Li, Z., & Du, Z. (2011). GeoScope: Full 3D geospatial information system case study. Geo-Spatial Information Science, 14(2), 150–156. Accessed May 12, 2017.
  32. Zlatanova, S., & Tempfli, K. (2000). Modelling for 3D GIS: Spatial analysis and visualisation through the web. International archives of photogrammetry and remote sensing, 33(B4/3; PART 4), 1257–1264. Accessed May 12, 2017.

Copyright information

© Indian Society of Remote Sensing 2018

Authors and Affiliations

  • Sameer Saran
    • 1
    Email author
  • Kapil Oberai
    • 1
  • Parag Wate
    • 1
  • Amol Konde
    • 1
  • Arnab Dutta
    • 1
  • Kavisha Kumar
    • 1
  • A. Senthil Kumar
    • 1
  1. 1.Geoinformatics DepartmentIndian Institute of Remote Sensing, Indian Space Research OrganisationDehradunIndia

Personalised recommendations