Archaeological and Anthropological Sciences

, Volume 11, Issue 9, pp 4927–4946 | Cite as

Sex estimation from the calcaneus and talus using discriminant function analysis and its possible application in fossil remains

  • Carmen Alonso-LlamazaresEmail author
  • Adrián Pablos
Original Paper


Foot bones have been shown to be sexually dimorphic and they are frequently used for sex estimation. In this study, we estimated the sex based on the calcaneus and the talus of a modern North American population obtained from the Hamann-Todd Osteological Collection, housed at the Cleveland Museum of Natural History (Ohio, USA). A total of 164 calcanei (84 males and 80 females) and 162 tali (83 males and 79 females) were studied. Several univariate discriminant functions were obtained, with accuracy ranging from 70.2 to 90.2%. The best variable for sex estimation in this sample is the talar length. Multivariate discriminant functions were also obtained. The accuracy (83.3 to 96.4%) was generally higher than that obtained with the univariate discriminant functions. The best multivariate equation is the one that uses all the variables measured in the talus. Discriminant functions previously reported in other studies were tested on the Hamann-Todd collection to verify their validity outside the population for which they were made. In addition, together with the equations reported here, they were applied on data from fossil remains belonging to three different groups (Homo neanderthalensis, hominins from the Sima de los Huesos, and anatomically modern Homo sapiens) in order to find some discriminant functions that allow for a valid determination of sex in this type of fossil populations. Several equations yielded good correct allocation percentages in fossil populations thus facilitating the estimation of sex for 16 fossil specimens of previously unknown sex.


Sex determination Discriminant functions Calcaneus Talus Foot Hamann-Todd collection Fossils 



We would like to acknowledge Carlos Lorenzo, who provided some data. We appreciate the constructive and fruitful discussion provided by Ignacio Martínez. Lauren Ames kindly reviewed a previous English version. We are indebted to the people who have allowed us access to the important skeletal collection in their care and kindly provided assistance at the Cleveland Museum of Natural History (CMNH) for access to the Hamann-Todd Osteological Collection.

Funding information

This research has received support in part from the ‘Ministerio de Ciencia, Innovación y Universidades (MICINN)’ of Spain (Project PGC2018-093925-B-C33).

Supplementary material

12520_2019_855_MOESM1_ESM.docx (108 kb)
ESM 1 (DOCX 107 kb)


  1. Ahmed AA (2013) Estimation of sex from the lower limb measurements of Sudanese adults. Forensic Sci Int 229:169.e1–169.e7CrossRefGoogle Scholar
  2. Arsuaga JL, Carretero JM, Lorenzo C, Gracia A, Martínez I, Bermúdez De Castro JM, Carbonell E (1997) Size variation in Middle Pleistocene humans. Science 277:1086–1088CrossRefGoogle Scholar
  3. Auerbach BM, Ruff CB (2004) Human body mass estimation: a comparison of “morphometric” and “mechanical” methods. Am J Phys Anthropol 125:331–342. CrossRefGoogle Scholar
  4. Berger LR et al (2015) Homo naledi, a new species of the genus Homo from the Dinaledi Chamber. South Africa Elife 4:e09560Google Scholar
  5. Bidmos M (2006) Metrical and non-metrical assessment of population affinity from the calcaneus. Forensic Sci Int 159:6–13CrossRefGoogle Scholar
  6. Bidmos MA, Asala SA (2003) Discriminant function sexing of the calcaneus of the South African whites. J Forensic Sci 48:1213–1218CrossRefGoogle Scholar
  7. Bidmos MA, Asala SA (2004) Sexual dimorphism of the calcaneus of South African blacks. J Forensic Sci 49:JFS2003254–JFS2003255Google Scholar
  8. Bidmos M, Asala S (2005) Calcaneal measurement in estimation of stature of South African blacks. Am J Phys Anthropol 126:335–342CrossRefGoogle Scholar
  9. Bidmos MA, Dayal MR (2003) Sex determination from the talus of South African whites by discriminant function analysis. Am J Forensic Med Pathol 24:322–328CrossRefGoogle Scholar
  10. Bidmos MA, Dayal MR (2004) Further evidence to show population specificity of discriminant function equations for sex determination using the talus of South African blacks. J Forensic Sci 49:JFS2003431–JFS2003436Google Scholar
  11. Boyle EK, DeSilva J (2015) A large Homo erectus talus from Koobi For a, Kenya (KNM-ER 5428), and Pleistocene Hominin Talar. Evolution Paleo Anthropology 2015:1–13Google Scholar
  12. Bräuer G (1988) Osteometrie. In: Martin R, Knuβman R (eds) Anthropologie Handbuch der vergleichenden Biologie des menschen. Fisher, Stuttgart, pp 160–232Google Scholar
  13. Carretero JM, Quam RM, Gómez-Olivencia A, Castilla M, Rodríguez L, García-González R (2015) The Magdalenian human remains from El Mirón cave, Cantabria (Spain). J Archaeol Sci 60:10–27CrossRefGoogle Scholar
  14. Cattaneo C (2007) Forensic anthropology: developments of a classical discipline in the new millennium. Forensic Sci Int 165:185–193CrossRefGoogle Scholar
  15. Dixit S, Kakar S, Agarwal S, Choudhry R (2007) Sexing of human hip bones of Indian origin by discriminant function analysis. J Forensic Legal Med 14:429–435CrossRefGoogle Scholar
  16. Ekizoglu O, Inci E, Palabiyik FB, Can IO, Er A, Bozdag M, Kacmaz IE, Kranioti EF (2017) Sex estimation in a contemporary Turkish population based on CT scans of the calcaneus. Forensic Sci Int 279:310.e1–310.e6CrossRefGoogle Scholar
  17. Estalrrich A, Rosas A (2013) Handedness in Neandertals from the El Sidrón (Asturias, Spain): evidence from instrumental striations with ontogenetic inferences. PLoS One 8:e62797CrossRefGoogle Scholar
  18. Gebo DL (1992) Plantigrady and foot adaptation in African apes: implications for hominid origins. Am J Phys Anthropol 89:29–58CrossRefGoogle Scholar
  19. Gonçalves D (2011) The reliability of osteometric techniques for the sex determination of burned human skeletal remains Homo. J Comp Human Biol 62:351–358CrossRefGoogle Scholar
  20. Gonçalves D, Thompson T, Cunha E (2013) Osteometric sex determination of burned human skeletal remains. J Forensic Legal Med 20:906–911CrossRefGoogle Scholar
  21. Grabowski M, Hatala KG, Jungers WL, Richmond BG (2015) Body mass estimates of hominin fossils and the evolution of human body size. J Hum Evol 85:75–93. CrossRefGoogle Scholar
  22. Grabowski M, Hatala KG, Jungers WL (2018) Body mass estimates of the earliest possible hominins and implications for the last common ancestor. J Hum Evol 122:84–92. CrossRefGoogle Scholar
  23. Gualdi-Russo E (2007) Sex determination from the talus and calcaneus measurements. Forensic Sci Int 171:151–156CrossRefGoogle Scholar
  24. Heymsfield SB, Gallagher D, Mayer L, Beetsch J, Pietrobelli A (2007) Scaling of human body composition to stature: new insights into body mass index. Am J Clin Nutr 86:82–91CrossRefGoogle Scholar
  25. Introna F, Di Vella G, Campobasso CP, Dragone M (1997) Sex determination by discriminant analysis of calcanei measurements. J Forensic Sci 42:725–728CrossRefGoogle Scholar
  26. Introna F, Di Vella G, Campobasso CP (1998) Sex determination by discriminant analysis of patella measurements. Forensic Sci Int 95:39–45CrossRefGoogle Scholar
  27. İşcan MY, Miller-Shaivitz P (1984) Discriminant function sexing of the tibia. J Forensic Sci 29:1087–1093Google Scholar
  28. İşcan MY, Loth SR, King CA, Shihai D, Yoshino M (1998) Sexual dimorphism in the humerus: a comparative analysis of Chinese, Japanese and Thais. Forensic Sci Int 98:17–29CrossRefGoogle Scholar
  29. Karakostis F, Zorba E, Moraitis K (2014) Osteometric sex determination using proximal foot phalanges from a documented human skeletal collection. Anthropol Anz 71:403–427CrossRefGoogle Scholar
  30. Karakostis F, Zorba E, Moraitis K (2015) Sexual dimorphism of proximal hand phalanges. Int J Osteoarchaeol 25:733–742CrossRefGoogle Scholar
  31. Kim D-I, Kim Y-S, Lee U-Y, Han S-H (2013) Sex determination from calcaneus in Korean using discriminant analysis forensic science international. 228:177.e1–177.e177177 e7Google Scholar
  32. King CA, İşcan MY, Loth SR (1998) Metric and comparative analysis of sexual dimorphism in the Thai femur. J Forensic Sci 43:954–958CrossRefGoogle Scholar
  33. Kuzmin YV, Kosintsev PA, Razhev DI, Hodgins GW (2009) The oldest directly-dated human remains in Siberia: AMS 14C age of talus bone from the Baigara locality, West Siberian Plain. J Hum Evol 57:91–95CrossRefGoogle Scholar
  34. Lacoste Jeanson A, Santos F, Villa C, Dupej J, Lynnerup N, Brůžek J (2017) Body mass estimation from the skeleton: an evaluation of 11 methods. Forensic Sci Int 281:183.e1–183.e8. CrossRefGoogle Scholar
  35. Lee S-h (2006) Patterns of dental sexual dimorphism in Krapina and Předmostí: a new approach. Period Biol 108:417–424Google Scholar
  36. Lorenzo C, Carretero JM, Arsuaga JL, Gracia A, Martínez I (1998) Intrapopulational body size variation and cranial capacity variation in Middle Pleistocene humans: the Sima de los Huesos sample (Sierra de Atapuerca, Spain). Am J Phys Anthropol 106:19–33CrossRefGoogle Scholar
  37. Machado Mendoza D, Pablo Pozo J (2008) Estudio del dimorfismo sexual del radio en europoides cubanos Revista Española de Antropología Física, pp 81–86Google Scholar
  38. Mahakkanukrauh P, Praneatpolgrang S, Ruengdit S, Singsuwan P, Duangto P, Case DT (2014) Sex estimation from the talus in a Thai population. Forensic Sci Int 240:152.e1–152.e8CrossRefGoogle Scholar
  39. Marino EA (1995) Sex estimation using the first cervical vertebra. Am J Phys Anthropol 97:127–133. CrossRefGoogle Scholar
  40. Martin R, Saller K (1957) 1966: Lehrbuch der Anthropologie G Fischer, StuttgartGoogle Scholar
  41. McHenry HM (1992) Body size and proportions in early hominids. Am J Phys Anthropol 87:407–431. CrossRefGoogle Scholar
  42. Murphy A (2002a) The calcaneus: sex assessment of prehistoric New Zealand Polynesian skeletal remains. Forensic Sci Int 129:205–208CrossRefGoogle Scholar
  43. Murphy A (2002b) The talus: sex assessment of prehistoric New Zealand Polynesian skeletal remains. Forensic Sci Int 128:155–158CrossRefGoogle Scholar
  44. Pablos A, Gómez-Olivencia A, García-Pérez A, Martínez I, Lorenzo C, Arsuaga JL (2013a) From toe to head: use of robust regression methods in stature estimation based on foot remains. Forensic Sci Int 226:299.e1–299.e7CrossRefGoogle Scholar
  45. Pablos A, Martínez I, Lorenzo C, Gracia A, Sala N, Arsuaga JL (2013b) Human talus bones from the Middle Pleistocene site of Sima de los Huesos (sierra de Atapuerca, Burgos, Spain). J Hum Evol 65:79–92CrossRefGoogle Scholar
  46. Pablos A, Martínez I, Lorenzo C, Sala N, Gracia-Téllez A, Arsuaga JL (2014) Human calcanei from the Middle Pleistocene site of Sima de los Huesos (sierra de Atapuerca, Burgos, Spain). J Hum Evol 76:63–76CrossRefGoogle Scholar
  47. Pablos A, Pantoja-Pérez A, Martínez I, Lorenzo C, Arsuaga JL (2017) Metric and morphological analysis of the foot in the Middle Pleistocene sample of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain). Quat Int 433:103–113CrossRefGoogle Scholar
  48. Pablos A, Gómez-Olivencia A, Maureille B, Holliday TW, Madelaine S, Trinkaus E, Couture-Veschambre C (2019) Neandertal foot remains from Regourdou 1 (Montignac-sur-Vézère, Dordogne, France). J Hum Evol 128:17–44CrossRefGoogle Scholar
  49. Peckmann TR, Orr K, Meek S, Manolis SK (2015a) Sex determination from the calcaneus in a 20th century Greek population using discriminant function analysis. Sci Justice 55:377–382CrossRefGoogle Scholar
  50. Peckmann TR, Orr K, Meek S, Manolis SK (2015b) Sex determination from the talus in a contemporary Greek population using discriminant function analysis. J Forensic Leg Med 33:14–19CrossRefGoogle Scholar
  51. Pomeroy E, Lahr MM, Crivellaro F, Farr L, Reynolds T, Hunt CO, Barker G (2017) Newly discovered Neanderthal remains from Shanidar Cave, Iraqi Kurdistan, and their attribution to Shanidar 5. J Hum Evol 111:102–118CrossRefGoogle Scholar
  52. Reno PL, Meindl RS, McCollum MA, Lovejoy CO (2003) Sexual dimorphism in Australopithecus afarensis was similar to that of modern humans. Proc Natl Acad Sci 100:9404–9409CrossRefGoogle Scholar
  53. Rhoads JG, Trinkaus E (1977) Morphometrics of the Neandertal talus. Am J Phys Anthropol 46:29–43CrossRefGoogle Scholar
  54. Riepert T, Drechsler T, Schild H, Nafe B, Mattern R (1996) Estimation of sex on the basis of radiographs of the calcaneus. Forensic Sci Int 77:133–140CrossRefGoogle Scholar
  55. Rivero de la Calle M, Suárez LT, González OC (1995) Metric determination of sex by talus and calcaneus in Cuban Europeans Rivista di. Antropologia (Roma) 73:75–82Google Scholar
  56. Robinson MS, Bidmos MA (2011) An assessment of the accuracy of discriminant function equations for sex determination of the femur and tibia from a South African population. Forensic Sci Int 206:212.e1–212.e5CrossRefGoogle Scholar
  57. Rodríguez S, Miguéns X, Rodríguez-Calvo MS, Febrero-Bande M, Muñoz-Barús JI (2013) Estimating adult stature from radiographically determined metatarsal length in a Spanish population. Forensic Sci Int 226:297.e1–297.e4CrossRefGoogle Scholar
  58. Rosas A, Ferrando A, Bastir M, García-Tabernero A, Estalrrich A, Huguet R, García-Martínez D, Pastor JF, de la Rasilla M (2017) Neandertal talus bones from El Sidrón site (Asturias, Spain): a 3D geometric morphometrics analysis. Am J Phys Anthropol 164:394–415CrossRefGoogle Scholar
  59. Ruff C (2002) Variation in human body size and shape. Annu Rev Anthropol 31:211–232CrossRefGoogle Scholar
  60. SA-e A-e, Abd-elhameed M, AA-e E (2012) Talus measurements as a diagnostic tool for sexual dimorphism in Egyptian population. J Forensic Legal Med 19:70–76CrossRefGoogle Scholar
  61. Sakaue K (2011) Sex assessment from the talus and calcaneus of Japanese Bull Natl Mus Nat Sci Ser D 37:35–48Google Scholar
  62. Scheuer L (2002) Application of osteology to forensic medicine. Clin Anat 15:297–312CrossRefGoogle Scholar
  63. Silva AM (1995) Sex assessment using the calcaneus and talus. Antropol Port 13:107–119Google Scholar
  64. Steele DG (1976) The estimation of sex on the basis of the talus and calcaneus. Am J Phys Anthropol 45:581–588CrossRefGoogle Scholar
  65. Steyn M, İşcan MY (1998) Sexual dimorphism in the crania and mandibles of South African whites. Forensic Sci Int 98:9–16CrossRefGoogle Scholar
  66. Trancho GJ, Robledo B, López-Bueis I, Sánchez JA (1997) Sexual determination of the femur using discriminant functions. Analysis of a Spanish population of known sex and age. J Forensic Sci 42:181–185CrossRefGoogle Scholar
  67. Trinkaus E (1980) Sexual differences in Neanderthal limb bones. J Hum Evol 9:377–397CrossRefGoogle Scholar
  68. Wells LH (1931) The foot of the South African native. Am J Phys Anthropol 15:185–289CrossRefGoogle Scholar
  69. Will M, Stock JT (2015) Spatial and temporal variation of body size among early Homo. J Hum Evol 82:15–33. CrossRefGoogle Scholar
  70. Cleveland Museum of Natural History (CMNH). Physical Anthropology. Collections & Database Accessed 15/05/2018
  71. Zakaria MS, Mohammed AH, Habib SR, Hanna MM, Fahiem AL (2010) Calcaneus radiograph as a diagnostic tool for sexual dimorphism in Egyptians. J Forensic Legal Med 17:378–382CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Área de Antropología Física, Departamento de Biología de Organismos y SistemasUniversidad de OviedoOviedoSpain
  2. 2.Centro Nacional de Investigación sobre la Evolución Humana (CENIEH)BurgosSpain
  3. 3.Centro Mixto UCM-ISCIII de Investigación sobre Evolución y Comportamiento HumanosMadridSpain
  4. 4.Área de Antropología Física, Departamento de Ciencias de la VidaUniversidad de AlcaláMadridSpain

Personalised recommendations