Archaeological and Anthropological Sciences

, Volume 11, Issue 9, pp 5001–5008 | Cite as

Practical application of visible-induced luminescence and use of parasitic IR reflectance as relative spatial reference in Egyptian artifacts

  • Paolo A. M. Triolo
  • Martina Spingardi
  • Giorgio A. Costa
  • Federico LocardiEmail author
Original Paper


Egyptian blue (CaCuSi4O10) is one of the most ancient artificial pigments, widely used in ancient times. Its peculiarity is an exceptional infrared emission upon visible excitation, allowing an easy and non-invasive diagnostic through the so-called visible-induced luminescence (VIL) technique. Usually, it requires total absence of infrared parasitic light, highlighting areas in which the pigment is present even in traces. In this report, we propose the introduction of a small portion of IR parasitic light as spatial reference for locating Egyptian blue on analyzed object. In VIL modality, the contemporary reflectance transformation imaging (RTI) and 3D photogrammetric model reconstruction were performed with the final 3D rebuilding of surface, morphology, and pigment distribution. We demonstrated the possibility to perform VIL and 3D photogrammetry without opening the conservation case that is extremely important by a conservation point of view, avoiding any microclimatic alteration, compatibly with the minimum invasiveness (absence of contact and displacement of the object).


Egyptian blue Visible-induced luminescence Infrared emission Reflectance transformation imaging Photogrammetry Egyptian artifacts 



The authors kindly acknowledge Dr.ssa Valentina Turina of the Museo Egizio di Torino (Fondazione Museo delle Antichità Egizie di Torino, Turin, Italy) and Dr. Guido Rossi of the Museo di Archeologia Ligure (Genoa, Italy) for having granted analyses on the artifacts.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Accorsi G, Verri G, Bolognesi M, Armaroli N, Clementi C, Miliani C, Romani A (2009) The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chem Commun:3392–3394.
  2. Ajo D, Chiari G, De Zuane F, Favaro ML, Bertolin M (1996) Photoluminescence of some blue natural pigments and related synthetic materials. In: V Internat. Conf. Non-Destructive Testing, Microanal. Methods and Environm. Eval. for Study and Conservation of Works of Art (Budapest, September 24–28, 1996). Proceedings, 33–47Google Scholar
  3. Alfeld M, Baraldi C, Gamberini MC, Walter P (2018) Investigation of the pigment use in the Tomb of the Reliefs and other tombs in the Etruscan Banditaccia Necropolis. X-Ray Spectrom:1–12.
  4. Berdahl P, Boocock SK, Chan GC-Y, Chen SS, Levinson RM, Zalich MA (2018) High quantum yield of the Egyptian blue family of infrared phosphors (MCuSi4O10, M = Ca, Sr, Ba). J Appl Phys 123:193103. CrossRefGoogle Scholar
  5. Berke H (2002) Chemistry in ancient times: the development of blue and purple pigments. Angew Chem Int Ed 41:2483–2487.<2483::AID-ANIE2483>3.0.CO;2-U CrossRefGoogle Scholar
  6. Berke H (2007) The invention of blue and purple pigments in ancient times. Chem Soc Rev 36:15–30. CrossRefGoogle Scholar
  7. Bredal-Jørgensen J, Sanyova J, Rask V, Sargent ML, Therkildsen RH (2011) Striking presence of Egyptian blue identified in a painting by Giovanni Battista Benvenuto from 1524. Anal Bioanal Chem 401:1433–1439. CrossRefGoogle Scholar
  8. Chiari G (2018) Photoluminescence of Egyptian blue, in: SAS encyclopedia of archaeological sciences. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  9. Corcoran LH (2016) The color blue as an ‘Animator’ in ancient Egyptian art. In: Goldman RB (ed) Essays in global color history, interpreting the ancient spectrum. Gorgias studies in classical and late antiquity 19. Gorgias press, Piscataway, pp 41–63 color pls.2CrossRefGoogle Scholar
  10. Cortese V, Rossi G (2008) Dalla terra nera alla terra di Ponente. La collezione egizia del Museo di archeologia ligure. Il portolano, Genoa. ISBN-10: 8895051068Google Scholar
  11. Cultural Heritage Imaging (CHI) (2018) Reflectance transformation imaging. Guide to RTIViewer. Cultural Heritage Ima- ging and Visual Computing Lab, ISTI-Italian National Research Council, San Francisco, CA Accessed January 2019
  12. Franceschi E, Locardi F (2014) Strontium, a new marker of the origin of gypsum in cultural heritage? J Cult Herit 15:522–527. CrossRefGoogle Scholar
  13. Garstki K (2017) Virtual representation: the production of 3D digital artifacts. J Archaeol Method Theory 24:726–750. CrossRefGoogle Scholar
  14. Giménez J, Espriu-Gascon A, Bastos-Arrieta J, de Pablo J (2017) Effect of NaCl on the fabrication of the Egyptian blue pigment. J Archaeol Sci Rep 14:174–180. Google Scholar
  15. Hatton GD, Shortland AJ, Tite MS (2008) The production technology of Egyptian blue and green frits from second millennium BC Egypt and Mesopotamia. J Archaeol Sci 35:1591–1604. CrossRefGoogle Scholar
  16. Lazzarini L (1982) The discovery of Egyptian blue in a Roman Fresco of the mediaeval period (ninth century). Source Stud Conserv 27119:84–86. Google Scholar
  17. Linn R, Comelli D, Valentini G, Mosca S, Nevin A (2018) Egyptian blue pigment in East Mediterranean wall paintings: a study of the lifetime of its optical infrared emission. Strain 55:e12277. CrossRefGoogle Scholar
  18. Malzbender T, Gelb D, Wolters H (2001) Polynomial texture maps. Proc. 28th Annu. Conf. Comput. Graph. Interact. Tech. - SIGGRAPH ‘01 519–528.
  19. Mateos LD, Cosano D, Esquivel D, Osuna S, Jiménez-Sanchidrián C, Ruiz JR (2018) Use of Raman microspectroscopy to characterize wallpaintings in Cerro de las Cabezas and the Roman villa of Priego de Cordoba (Spain). Vib Spectrosc 96:143–149. CrossRefGoogle Scholar
  20. Miles J, Pitts M, Pagi H, Earl G (2014) New applications of photogrammetry and reflectance transformation imaging to an Easter Island statue. Antiquity 88:596–605. CrossRefGoogle Scholar
  21. Miriello D, Bloise A, Crisci G, De Luca R, De Nigris B, Martellone A, Osanna M, Pace R, Pecci A, Ruggieri N (2018) Non-destructive multi-analytical approach to study the pigments of wall painting fragments reused in mortars from the archaeological site of Pompeii (Italy). Minerals 8:134. CrossRefGoogle Scholar
  22. Mytum H, Peterson JR (2018) The application of reflectance transformation imaging (RTI) in historical archaeology. Hist Archaeol 52:489–503.
  23. Newman SE (2015) Applications of reflectance transformation imaging (RTI) to the study of bone surface modifications. J Archaeol Sci 53:536–549. CrossRefGoogle Scholar
  24. Nicola M, Aceto M, Gheroldi V, Gobetto R, Chiari G (2018) Egyptian blue in the Castelseprio mural painting cycle. Imaging and evidence of a non-traditional manufacture. J Archaeol Sci Rep 19:465–475. Google Scholar
  25. Piovesan R, Siddall R, Mazzoli C, Nodari L (2011) The Temple of Venus (Pompeii): a study of the pigments and painting techniques. J Archaeol Sci 38:2633–2643. CrossRefGoogle Scholar
  26. Pozza G, Ajò D, Chiari G, De Zuane F, Favaro M (2000) Photoluminescence of the inorganic pigments Egyptian blue, Han blue and Han purple. J Cult Herit 1:393–398. CrossRefGoogle Scholar
  27. Smith GD, Nunan E, Walker C, Kushel D (2009) Inexpensive, near-infrared imaging of artwork using a night-vision webcam for chemistry-of-art courses. J Chem Educ 86:1382–1388. CrossRefGoogle Scholar
  28. Verri G (2009) The spatially resolved characterisation of Egyptian blue, Han blue and Han purple by photo-induced luminescence digital imaging. Anal Bioanal Chem 394:1011–1021. CrossRefGoogle Scholar
  29. Verri G, Saunders D, Ambers J, Sweek T (2010) Digital maping of Egyptian blue : conservation implications. Stud Conserv 55:220–224. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Terra dell’Ambiente e della VitaUniversità degli Studi di GenovaGenoaItaly
  2. 2.Dipartimento di Chimica e Chimica IndustrialeUniversità degli Studi di GenovaGenoaItaly
  3. 3.CNR – SPINGenoaItaly

Personalised recommendations