Advertisement

Abrasion in archaeological fish bones from sand dunes. An experimental approach

  • Romina FrontiniEmail author
  • Yolanda Fernández-Jalvo
  • María Dolores Pesquero Fernández
  • Rodrigo J. Vecchi
  • Cristina Bayón
Original Paper
  • 22 Downloads

Abstract

Fish bones are still an unknown tool in taphonomic studies. We have carried out several experiments which have shown that fish bones may provide key taphonomic traits. Fossil fish bones in archaeological sites (from caves to riverbanks or seashores) are frequently result of predation by humans or any other predator, as well as abiotic agents. The original environment of fish is aquatic restricted to specific water contexts and the presence of fish in fossil sites provides relevant information regarding paleoenvironments, human/animal predatory behaviors, and site formation. In spite of the interest of fossil fish remains, most taphonomic experiments have been focused on mammalian fossil bones. This paper shows results obtained from experiments that help interpreting palaeoenvironmental changes, potential space-time mixtures, and site formation. Our experiments have provided distinct criteria to distinguish the action of sand projected by wind, friction of bones against sand substrates, or sand with or without water abrading the bone surface. Experimental results have been compared to an archaeological case: El Americano II site (middle Holocene, Argentina) to elucidate how the site was formed. Criteria obtained so far from each type of experiment described here greatly increase knowledge for interpreting other sites that yield fossil fish bones.

Keywords

Sand abrasion Fish bones Sand dunes Argentina Experimental taphonomy 

Notes

Acknowledgements

The authors are grateful to Arturo Morales and Eufrasia Roselló for discussions and comments on this experimental project as well as preparation of specimens used in these experiments. The authors are also thankful to the technicians from the Laboratory of non-Invasive techniques at the MNCN (Laura Tormo, Alberto Jorge, Marta Furió, Cristina Paradela y Pedro Valverde).

The experiments could be performed thanks to international grants from CONICET and Ministerio de Cultura de la Nacion from Argentina. This work was supported by European Regional Development Fund (ERDF), the National Program Projects of the Spanish Ministry of Research [CGL2016-79334-P], the Consejo Superior de Investigaciones Científicas [COOPB-20287], Agencia Nacional de Promoción Científica y Tecnológica [BID PICT 2015 0272; BID PICT 2016 0368], and CONICET [PIP 112-201301-00362].

References

  1. Aldazabal V, Eugenio E, Silveira M (2011) Arqueología del sector costero al sur de Bahía de San Blas: Sitio las Olas 11. Rev Estud Marítimos Soc 4:10–19Google Scholar
  2. Andrews P, Cook J (1985) Natural modifications to bones in a temperate setting. Man 20(4):675–691CrossRefGoogle Scholar
  3. Aramayo SA, Gutiérrez de Téllez B, Schillizzi RA (2005) Sedimentologic and palaeontologic studies of the southeast coast of Buenos Aires Province, Argentina: a late Pleistocene-Holocene paleoenvironmental reconstruction. J South Am Earth Sci 20:65–71CrossRefGoogle Scholar
  4. Bagnold RA (1974) The physics of blown sand and desert dunes. SpringerGoogle Scholar
  5. Bayón C, Politis G (2014) The inter-tidal zone site of La Olla: Early–Middle Holocene human adaptation on the Pampean Coast of Argentina. In: Evans AM, Flatman JC, Flemming NC (eds) Prehistoric archaeology on the continental shelf. Springer, New York, pp 115–130CrossRefGoogle Scholar
  6. Bayón C, Frontini R, Vecchi R (2012) Middle Holocene settlements on coastal dunes, southwest Nuenos Aires Province, Argentina. Quat Int 256:54–61CrossRefGoogle Scholar
  7. Beherensmeyer AK, Gordon KD, Yanagi GT (1986) Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319:768–771.  https://doi.org/10.1038/319768a0 CrossRefGoogle Scholar
  8. Behrensmeyer AK, Kidwell SM (1985) Taphonomy’s contributions to paleobiology. Paleobiology 11:105–119CrossRefGoogle Scholar
  9. Blasi A, Politis G, Bayón C (2013) Palaeoenvironmental reconstruction of La Olla, a Holocene archaeological site in the Pampean coast (Argentina). J Archaeol Sci 40:1554–1567CrossRefGoogle Scholar
  10. Brain CK (1967) Bone weathering and the problem of bone pseudo-tools. S Afr J Sci 63:97–99Google Scholar
  11. Bromage TG (1984) Interpretation of scanning electron microscopic images of abraded forming bone surfaces. Am J Phys Anthropol 64:161–178CrossRefGoogle Scholar
  12. Butler VL (1993) Natural versus cultural salmonid remains: origin of the Dalles Roadcut bones, Columbia River, Oregon, U.S.A. J Archaeol Sci 20:1–24.  https://doi.org/10.1006/jasc.1993.1001 CrossRefGoogle Scholar
  13. Butler VL, Chatters JC (1994) The role of bone density in structuring prehistoric salmon bone assemblages. J Archaeol Sci 21:413–424CrossRefGoogle Scholar
  14. Butler VL, Schroeder R (1998) Do digestive processes leave diagnostic traces on fish bones? J Archaeol Sci 25:957–971CrossRefGoogle Scholar
  15. Corbat M, Giardina M, Zangrando AF (2017) The influence of fish bone morphology on aquatic transport: an experimental approach through elements of Creole perch (Percichthyidae: Percichthys trucha; [Valenciennes, 1833]). J Archaeol Sci Rep 14:252–261Google Scholar
  16. Domínguez-Rodrigo M, de Juana S, Galán AB, Rodríguez M (2009) A new protocol to differentiate trampling marks from butchery cut marks. J Archaeol Sci 36(12):2643–2654CrossRefGoogle Scholar
  17. Favier Dubois CM, Scartascini FL (2012) Intensive fishery scenarios on the North Patagonian coast (Río Negro Argentina) during the mid-Holocene. Quat Int 256:62–70CrossRefGoogle Scholar
  18. Fernádez-Jalvo Y, Scott L, Andrews P (2011) Taphonomy in palaeoecological interpretations. Quat Sci Rev 30:1296–1302CrossRefGoogle Scholar
  19. Fernández-Jalvo Y, Andrews P (2003) Experimental effects of water abrasion on bone fragments. J Taphonomy 1:147–163Google Scholar
  20. Fernández-Jalvo Y, Andrews P (2016) Atlas of taphonomic identifications. 1001+ images of fossil and recent mammal bone modification. Springer, DordrechtCrossRefGoogle Scholar
  21. Fernández-Jalvo Y, Andrews P, Sevilla P, Requejo V (2014) Digestion vs. abrasion features in rodent bones. Lethaia 47:323–336CrossRefGoogle Scholar
  22. Fernández-López SR (1991) Taphonomic concepts for a theoretical biochronology. Rev Española Paleontol 6:37–49Google Scholar
  23. Fernández-López SR (2000) Temas de Tafonomía. Departamento de Paleonotología, Universidad Complutense de Madrid. 167 ppGoogle Scholar
  24. Fernández E, Caló J, y Marcos A, Aldacour H (2003) Interrelación de los ambientes eólico y marino a través del análisis textural y mineralógico de las arenas de Monte Hermoso, Argentina. Asociación Argentina de Sedimentología Revista 10 (2):151–161Google Scholar
  25. Frontini R, Bayón C (2017) Use of marine resources (fauna and tool stones) in the southwest of Buenos Aires Province (Argentina) during the Middle and Late Holocene. In: Mondini M, Muñoz AS, Fernández PM (eds) Zooarchaeology in the Neotropics: environmental diversity and human-animal interactions. Springer, Dordrecht, pp 25–46CrossRefGoogle Scholar
  26. Frontini, R., Vecchi, R., Bayón, C. 2018. Captura de Peces en la Costa Bonaerense Durante El Holoceno Medio. Oral presentation at “I Taller Estrategias y tácticas de procuramiento de presas en el pasado: su discusión a partir de la integración de distintas líneas de evidencia”, San Rafael, Argentina, AugustGoogle Scholar
  27. Gifford-González DGG (1991) Bones are not enough: analogues, knowledge and interpretative strategies in zooarchaeology. J Anthropol Archaeol 10:215–254CrossRefGoogle Scholar
  28. Griffith SJ, Thompson CEL, Thompson TJU, Gowland RL (2016) Experimental abrasion of water submerged bone: the influence of bombardment by different sediment classes on microabrasion rate. J Archaeol Sci Rep 10:15–29Google Scholar
  29. Guillaud E, Bearez P, Denys C, Raimond S (2017) New data on fish diet and bone digestion of the Eurasian otter (Lutra lutra) (Mammalia: Mustelidae) in central France. Eur Zool J 84(1):226–237CrossRefGoogle Scholar
  30. Gümrükçü M, Pante MC (2018) Assessing the effects of fluvial abrasion on bone surface modifications using high-resolution 3-D scanning. J Archaeol Sci Rep 21:208–221Google Scholar
  31. Isla FI, Cortizo LC, Turno Orellano HA (2001) Dinámica y evolución de las barreras medanosas, Provincia de Buenos Aires, Argentina. Rev Bras Geomorfol 2(1):73–83CrossRefGoogle Scholar
  32. Leon DC, Gutiérrez M, Politis GG, Bayón MC (2017) Análisis faunístico del sitio arqueológico La Olla (sectores 3 y 4), costa sudoeste del Litoral Atlántico Bonaerense. Relaciones de la Sociedad Argentina de Antropología XLII. Soc Arg Antropol (1):107–131Google Scholar
  33. Lubinski P (1996) Fish heads, fish heads: an experiment on differential bone preservation in a salmonid fish. J Archaeol Sci 23(2):175–181.  https://doi.org/10.1006/jasc.1996.0015 CrossRefGoogle Scholar
  34. Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Marean C (1995) Of taphonomy and zooarcheology. Evol Anthropol 4(2):64–72CrossRefGoogle Scholar
  36. Marín-Monfort MD, Pesquero MD, Fernández-Jalvo Y (2014) Compressive marks from gravel substrate on vertebrate remains: a preliminary experimental study. Quat Int 330:118–125CrossRefGoogle Scholar
  37. Martínez G (2017) Arqueología de cazadores-recolectores del curso inferior del Río Colorado (Provincia de Buenos Aires, Argentina). Aportes al conocimiento de las ocupaciones humanas Pampaeno-patagónicas. Serie Monográfica N° 6. INCUAPA-CONICET-UNICEN. OlavarríaGoogle Scholar
  38. Martínez D, Jiménez L, Bayón C, Politis G (2010) Sitios arqueológicos del Holoceno de la costa sur de la provincia de Buenos Aires: los ostracódos como indicadores paleoecológicos. Presentación al X Congreso Argentino de Paleontología y Bioestratigrafía y VII Congreso Latinoamericano de Paleontología, La Plata, ArgentinaGoogle Scholar
  39. Monserrat AL (2010) Evaluación del estado de conservación de dunas costeras: dos escalas de análisis de la costa pampeana. Unpublised PhD dissertation. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresGoogle Scholar
  40. Nelson JS, Grande TG, Wilson MVH (2016) Fishes of the world, 5th edn. WileyGoogle Scholar
  41. Nicholson R (1992) Bone survival: the effects of sedimentary abrasion and trampling on fresh and cooked bone. Int J Osteoarckaeol 2:79–90CrossRefGoogle Scholar
  42. Olsen SL, Shipman P (1988) Surface modification on bone: trampling versus butchery. J Archaeol Sci 15:535–553CrossRefGoogle Scholar
  43. Paleo MC, Paez MM, Meroni MP (2002) Condiciones ambientales y ocupación humana durante el holoceno tardío en el litoral fluvial bonaerense. In: Mazzanti, DL; Berón, M. and Oliva, F. (eds.) Del Mar a los Salitrales. Diez mil años de Historia Pampeana en el Umbral del Tercer Milenio. UNdMdelP-SAA, Mar del Plata-Buenos Aires: pp 365–376. UndeMdelP-SAA, Mar del Plata-Buenos AiresGoogle Scholar
  44. Pesquero MD, Alcala L, Fernández-Jalvo Y (2013) Taphonomy of the reference Miocene vertebrate mammal site of Cerro de la Garita, Spain. Lethaia 46:378–398.  https://doi.org/10.1111/let.12016 CrossRefGoogle Scholar
  45. Pinto Llona AC, Andrews P (1999) Amphibian taphonomy and its application to the fossil record of Dolina (Middle Pleistocene, Atapuerca, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 149:411–429CrossRefGoogle Scholar
  46. Politis GG, Leon DG (2010) Patrones adaptativos de los cazadores recolectores-pescadores de la margen occidental del Paraná Inferior-Plata. In: Cocco G, Feuillet Terzaghi MR (eds) Arqueología de cazadores recolectores en la Cuenca del Plata. Centro de Estudios Hispanoamericanos, Santa Fe, pp 63–86Google Scholar
  47. Scartascini F (2017) The role of ancient fishing on the desert coast of Patagonia, Argentina. J Island Coast Archaeol 12(1):115–132.  https://doi.org/10.1080/15564894.2016.1172380 CrossRefGoogle Scholar
  48. Shipman P, Rose JJ (1988) Bone tools: an experimental approach. Scanning electron microscopy in archaeology. British Archaeological Reports, International series 452, pp 303–335Google Scholar
  49. Sloss CR, Hesp P, Shepherd M (2012) Coastal dunes: aeolian transport. Nat Educ Knowl 3(10):21Google Scholar
  50. Svoboda A, Moreno JE (2014) Experimentación sobre los efectos de la meteorización en la supervivencia de elementos óseos de Percichthys trucha: implicaciones ictioarqueológicas para el sitio DV1, Lago Musters (Prov. Chubut, Argentina). Rev Chil Antropol 29(1):60–67.  https://doi.org/10.5354/0719-1472.2014.36208 Google Scholar
  51. Thompson CEL, Ball S, Thompson TJU, Gowland R (2011) The abrasion of modern and archaeological bones by mobile sediments: the importance of transport modes. J Archaeol Sci 38:784–793CrossRefGoogle Scholar
  52. Vecchi R, Frontini R., Bayón, C (2014) Ocupaciones en las dunas del litoral atlántico del Sudoeste bonaerense: el sitio El Americano II. Oral presentation at VII Congreso de Arqueología de la Región Pampena Argentina. Noviembre, Rosario Santa Fe, ArgentinaGoogle Scholar
  53. Wheeler A, Jones AKG (1989) Fishes. Cambridge University Press, CambridgeGoogle Scholar
  54. Willis LM, Boehm AR (2014) Fish bones, cut marks, and burial: implications for taphonomy and faunal analysis. J Archaeol Sci 45:20–25.  https://doi.org/10.1016/j.jas.2014.01.026 CrossRefGoogle Scholar
  55. Zangrando AF (2008) Ictioarqueología del canal Beagle. Explotación de peces y su implicación en la subsistencia humana. Sociedad Argentina de Antropología, Buenos AiresGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CONICET-Departamento de HumanidadesUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Laboratorio de Ensayos TafonómicosMuseo Nacional de Ciencias NaturalesMadridSpain
  3. 3.Departamento de HumanidadesUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations