Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 9, pp 4847–4872 | Cite as

Structural characterization and decontamination of dental calculus for ancient starch research

  • María Soto
  • Jamie Inwood
  • Siobhán Clarke
  • Alison Crowther
  • Danielle Covelli
  • Julien Favreau
  • Makarius Itambu
  • Steve Larter
  • Patrick Lee
  • Marina Lozano
  • Jason Maley
  • Aloyce Mwambwiga
  • Robert Patalano
  • Ramaswami Sammynaiken
  • Josep M Vergès
  • Jianfeng Zhu
  • Julio MercaderEmail author
Original Paper

Abstract

Ancient dental calculus research currently relies on destructive techniques whereby archeological specimens are broken down to determine their contents. Two strategies that could partly remediate a permanent loss of the original sample and enhance future analysis and reproducibility include (1) structural surface characterization through spectroscopy along with crystallographic and spectroscopic analysis of its molecular structure, and (2) surface decontamination protocols in which the efficacy of cleaning dental calculus prior to extraction is demonstrated. Dental calculus provides ancient starch research a niche where granules may be adsorbed to minerals, coated, overgrown, entrapped, and/or protected from chemical degradation. While encapsulation offers protection from degradation, it does not shield the sample’s surface from contamination. The most common approach to retrieving microbotanical particles from archeological calculus has been the direct decalcification of the sample, after a cleaning stage variously consisting of immersion in water, acids, and mechanical dislodgment via gas, sonication, and/or toothbrushes. Little is known about the efficiency of these methods for a complete removal of sediment/soil and unrelated microbotanical matter. In this paper, controlled laboratory experimentation leads to chemical structural characterization and a decontamination protocol to eradicate starch granules. Several concentrations of acids, bases, and enzymes were tested at intervals to understand their potential to gelatinize and fully destroy starch granules; arriving at a procedure that effectively eradicates modern starch prior to dissolution without damaging the matrix or entrapped starch microremains. This is the first attempt at creating synthetic calculus to understand and systematically test effective decontamination protocols for ancient starch research.

Keywords

Structural chemical characterization Raman XPS P-XRD Ancient dental calculus Ancient starch research Decontamination prior to decalcification Starch contamination 

Notes

Funding

This work was sponsored by the Canadian Social Sciences and Humanities Research Council under its Partnership Grant Program no. 895-2016-1017. The Saskatchewan Structural Sciences Centre (SSSC) is acknowledged for providing facilities to conduct this research. Canada Foundation for Innovation, Natural Sciences and Engineering Research Council of Canada and the University of Saskatchewan support research at the SSSC. The following Spanish institutions and grants made this work possible: MINECO/FEDER: CGL2015-65387-C03-1-P, Generalitat de Catalunya: 2017SGR1040 (URV: 2016PFR-URVB2-17). Junta de Castilla y León, and Fundación Atapuerca.

References

  1. Abdel-Aal EA, El-Sayed D, Shoeib M, Kandil AT (2013) Enhancing coating of brushite/hydroxyapatite layer on titanium alloy implant surface with additives. Appl Surf Sci 285:136–143Google Scholar
  2. Abraham J, Grenon M, Sánchex HJ, Pérez C, Barrea R (2005) A case study of elemental and structural composition of dental calculus during several stages of maturation using SRXRF. J Biomed Mater Res A 75:632–628.  https://doi.org/10.1002/jbm.a.30484 Google Scholar
  3. Armitage RA (1975) The extraction and identification of opal phytoliths from the teeth of ungulates. J Archaeol Sci 2:187–197.  https://doi.org/10.1016/0305-4403(75)90056-4 Google Scholar
  4. Atkin NJ, Abeysekera RM, Robards AW (1998) The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule to the gelatinization endotherm. Carbohydr Polym 36:193–204.  https://doi.org/10.1016/s0144-8617(98)00002-2 Google Scholar
  5. Baumhammers A, Conway JC, Saltzberg D, Matta RK (1973) Scanning electron microscopy of supragingival calculus. J Periodontol 44:92–95Google Scholar
  6. Blatt SH, Redmond BG, Cassman V, Sciulli PW (2011) Dirty teeth and ancient trade: evidence of cotton fibres in human dental calculus from Late Woodland, Ohio. Int J Osteoarchaeol 21:669–678.  https://doi.org/10.1002/oa.1173 Google Scholar
  7. Boyadjian CHC, Eggers S, Reinhard K (2007) Dental wash: a problematic method for extracting microfossils from teeth. J Archaeol Sci 34:1622–1628.  https://doi.org/10.1016/j.jas.2006.12.012 Google Scholar
  8. Brothwell DR, Brothwell P (1969) Food in antiquity: a survey of the diet of early peoples. Thames and Hudson, LondonGoogle Scholar
  9. Brown WE, Smith JP, Lehr JR, Frazier AW (1962) Octacalcium phosphate and hydroxyapatite: crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196:1050–1055Google Scholar
  10. Buckley S, Usai D, Jakob T, Radini A, Hardy K (2014) Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric Central Sudan. PLoS One 9:e100808.  https://doi.org/10.1371/journal.pone.0100808 Google Scholar
  11. Charlier P, Huynh-Charlier I, Munoz O, Billard M, Brun L, de la Grandmaison GL (2010) The microscope (optical and SEM) examination of dental calculus depositis (DCD). Potential interest in forensic anthropology of a bio-archaeological method. Legal Med 12:162–171.  https://doi.org/10.1016/j.legalmed.2010.03.003 Google Scholar
  12. Cnuts D, Rots V (2017) Extracting residues from stone tools for optical analysis: towards in experiment-based protocol. Archaeol Anthropol Sci 10:1717–1736.  https://doi.org/10.1007/s12520-017-0484-7 Google Scholar
  13. Coil J, Korstanje MA, Archer S, Hastorf CA (2003) Laboratory goals and considerations for multiple microfossil extraction in archaeology. J Archaeol Sci 30:991–1008.  https://doi.org/10.1016/s0305-4403(02)00285-6 Google Scholar
  14. Copeland L, Hardy K (2018) Archaeological starch. Agronomy 8:4.  https://doi.org/10.3390/agronomy801000 Google Scholar
  15. Cristiani E, Radini A, Edinborough M, Borić D (2016) Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. Proc Natl Acad Sci 113:10298–10303.  https://doi.org/10.1073/pnas.1603477113 Google Scholar
  16. Cristiani E, Radini A, Borić D, Robson HK, Caricola I, Carra M, Mutri G, Oxilia G, Zupancich A, Šlaus M, Vujević D (2018) Dental calculus and isotopes provide direct evidence of fish and plant consumption in Mesolithic Mediterranean. Sci Rep 8:8117Google Scholar
  17. Crowther A, Haslam M, Oakden N, Walde D, Mercader J (2014) Documenting contamination in ancient starch laboratories. J Archaeol Sci 49:90–104Google Scholar
  18. De Gelder J, De Gusseum K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147Google Scholar
  19. Dobney K, Brothwell D (1986) Dental calculus: its relevance to ancient diet and oral ecology. In: Olsen S (ed) Teeth and anthropology, vol 291. Archeopress, Oxford, pp 55–81Google Scholar
  20. Dorozhkin SV (2011) Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter 1:121–164.  https://doi.org/10.4161/biom.18790 Google Scholar
  21. Dorozhkin SV (2012) Amorphous calcium orthophosphates: nature, chemistry and biomedical applications. Int J Mater Chem 2:19–46.  https://doi.org/10.5923/j.ijmc.2012201.04 Google Scholar
  22. Downs RT, Hall-Wallace M (2003) The American mineralogist crystal structure database. Am Mineral 88:247–250Google Scholar
  23. Driessens FCM, Verbeeck R (1988) Relation between physio-chemical solubility and biodegradability of calcium phosphates. In: Putter C (ed) Implant materials in biofunction. Elsevier, Amsterdam, pp 105–111Google Scholar
  24. Dudgeon JV, Tromp M (2014) Diet, geography and drinking water in Polynesia: microfossil research from archaeological human dental calculus, Rapa Nui (Easter Island). Int J Osteoarchaeol 24:634–648.  https://doi.org/10.1002/oa.2249 Google Scholar
  25. Euba I, Allue E, Burjachs F (2016) Wood uses at El Mirador Cave (Atapuerca, Burgos) based on anthracology and dendrology. Quat Int 414:285–293.  https://doi.org/10.1016/j.quaint.2015.08.084 Google Scholar
  26. Expósito I, Burjachs F (2016) Taphonomic approach to the palynological record of burnt and unburnt samples from El Mirador cave (Sierra de Atapuerca, Burgos, Spain). Quat Int 414:258–271.  https://doi.org/10.1016/j.quaint.2016.01.051 Google Scholar
  27. Furutaka K, Monma H, Okura T, Takahashi S (2006) Characteristic reaction processes in the system brushite-NaOH solution. J Eur Ceram Soc 26:543–547Google Scholar
  28. Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32:177–191.  https://doi.org/10.1016/s0144-8617(97)00008-8 Google Scholar
  29. García-Granero JJ, Lancelotti C, Madella M, Ajithprasad P, Crowther A, Korisettar R, Weisskopf A (2016) Millet and herders: the origins of plant cultivation in semi-arid North Gujarat (India). Curr Anthropol 57:149–173 10.1086-685775 Google Scholar
  30. Goyal N, Gupta JK, Soni SK (2005) A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzym Microb Technol 37:723–734.  https://doi.org/10.1016/j.emzmitec.2005.04.017 Google Scholar
  31. Grazulis S, Chateigner D, Downs RT, Yokochi AT, Quiros M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography open database: an open-access collection of crystal structures. J Appl Crystallogr 42:726–729Google Scholar
  32. Grøn P, Van Campen GJ, Lindstrom I (1967) Human dental calculus: inorganic chemical and crystallographic composition. Arch Oral Biol 12:829–837.  https://doi.org/10.1016/0003-9969(67)90105-7 Google Scholar
  33. Hardy K, Blakeney T, Copeland L, Kirkham J, Wrangham R, Collins M (2009) Starch granules, dental calculus and new perspectives on ancient diet. J Archaeol Sci 36:248–255Google Scholar
  34. Hardy K, Buckley S, Collins M, Estalrrich A, Brothwell D, Copeland L, García-Taberno A, García-Vargas S, de la Rasilla M, Lalueza-Fox C, Huguet R, Bastir M, Santamaría D, Madella M, Wilson J, Cortés AF, Rosas A (2012) Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99:617–626Google Scholar
  35. Hardy K, Brand-Miller J, Brown KD, Thomas MG, Copeland L (2015) The importance of dietary carbohydrate in human evolution. Q Rev Biol 90:251–268 10.1086-682587 Google Scholar
  36. Hardy K, Radini A, Buckley S, Blasco R, Copeland L, Burjachs F, Girbal J, Yll R, Carbonell E, María Bermúdez de Castro J (2016a) Diet and environment 1.2 million years ago revealed through analysis of dental calculus from Europe’s oldest hominin at Sima del Elefante, Spain. Sci Nat 104 doi: https://doi.org/10.1007/s00114-016-1420-x
  37. Hardy K, Radini A, Buckley S, Sarig R, Copeland L, Gopher A, Barkai R (2016b) Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave, Israel. Quat Int 398:129–135.  https://doi.org/10.1016/j.quaint.2015.04.033 Google Scholar
  38. Haslam M (2004) The decomposition of starch grains in soils: implications for archaeological residue analyses. J Archaeol Sci 31:1715–1734Google Scholar
  39. Hayashizaki J, Ban S, Nakagaki H, Okumura A, Yoshii S, Robinson C (2008) Site specific mineral composition and microstructure of human supra-gingival dental calculus. Arch Oral Biol 53:168–174.  https://doi.org/10.1016/j.archoralbio.2007.09.003 Google Scholar
  40. Helbert W, Schülien M, Henrissat B (1996) Electron microscope investigation of the diffusion of Bacillus licheniformis α-amylase into corn starch granules. Int J Biol Macromol 19:165–169.  https://doi.org/10.1016/041-8130(96)01123-3 Google Scholar
  41. Hendy J, Warinner C, Bouwman A, Collins MJ, Fiddyment S, Fischer R, Hagan R, Hofman CA, Holst M, Chanes E, Klaus L (2018) Proteomic evidence of dietary sources in ancient dental calculus. Proc R Soc Lond (Biol) 285:20180977.  https://doi.org/10.1098/rspb.2018.0977 Google Scholar
  42. Henry AG, Piperno DR (2008) Using plant microfossils from dental calculus to recover human diet: a case study from tell al-Raqa'i, Syria. J Archaeol Sci 35:1943–1950.  https://doi.org/10.1016/j.jas.2007.12.005 Google Scholar
  43. Henry AG, Brooks AS, Piperno DR (2011) Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc Natl Acad Sci 108:486–491.  https://doi.org/10.1073/pnas.1016868108 Google Scholar
  44. Horrocks M, Nieuwoudt MK, Kinaston R, Buckley H, Bedford S (2014) Microfossil and Fourier transform infrared analyses of Lapita and post-Lapita human dental calculus from Vanuatu, Southwest Pacific. J Roy Soc New Zeal 44:17–33.  https://doi.org/10.1080/03036758.2013.842177 Google Scholar
  45. Hoyer I, Gaengler P, Bimberg R (1984) In vivo remineralization of human enamel and dental calculus formation. J Dent Res 63:1136–1139.  https://doi.org/10.1177/00220345840630090801 Google Scholar
  46. Huang ZQ, Lu JP, Li XH, Tong ZF (2007) Effect of mechanical activation on physico-chemical properties and structure of cassava starch. Carbohydr Polym 68:128–135.  https://doi.org/10.1016/j.carbpol.2006.07.017 Google Scholar
  47. Huang TT, Zhou DN, Jin ZY, Xu XM, Chen HQ (2015) Effect of debranching and heat-moisture treatments on structural characteristics and digestibility of sweet potato starch. Food Chem 187:218–224.  https://doi.org/10.1016/j.foodchem.2015.04.050 Google Scholar
  48. Jane J-L, Kasemsuwan T, Leas S, Zobel H, Robyt JF (1994) Anthology of starch granule morphology by scanning electron microscopy. Starch-Stärke 46:121–129.  https://doi.org/10.1002/star.19940460402 Google Scholar
  49. Jensen AT, Danø M (1954) Crystallography of dental calculus and the precipitation of certain calcium phosphates. J Dent Res 33:741–750.  https://doi.org/10.1177/00220345540330060201 Google Scholar
  50. Jensen AT, Rowles SL (1957) Magnesian whitlockite, a major consituent of dental calculus. Acta Odontol Scand 15:121–139.  https://doi.org/10.3109/00016355709041096 Google Scholar
  51. Kleinberg I (1970) Biochemistry of the dental plaque. Adv Oral Biol 4:43–90Google Scholar
  52. Kodaka T, Debari K, Higashi S (1988) Magnesium-containing crystals in human dental calculus. Microsc 37:73–80.  https://doi.org/10.1093/oxfordjournals.jmicro.a050666 Google Scholar
  53. Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res A 62:600–612Google Scholar
  54. Lalueza-Fox C, Juan J, Albert RM (1996) Phytolith analysis on dental calculus, enamel surface and burial soil: information about diet and paleoenvironment. Am J Phys Anthropol 101:101–113Google Scholar
  55. Laurence AR, Thoms AV, Bryant VM, McDonough C (2011) Airborne starch granules as a potential contamination source at archaeological sites. J Ethnobiol 31:213–232.  https://doi.org/10.2993/0278-0771-31.2.213 Google Scholar
  56. Li M, Yang Z, Wang H, Wang Q, Jia X, Ge QS (2010) Starch grains from dental calculus reveal ancient plant foodstuffs at Chenqimogou site, Gansu Province. Sci China Earth Sci 53:694–699.  https://doi.org/10.1007/s11430-010-0052-9 Google Scholar
  57. Madella M, García-Granero JJ, Out WA, Ryan P, Usai D (2014) Microbotanical evidence of domestic cereals in Africa 7000 years ago. PLoS One 9:e110177.  https://doi.org/10.1371/journal.pone.0110177 Google Scholar
  58. Maher GG (1983) Alkali gelatinization of flours. Starch-Stärke 35:271–276Google Scholar
  59. Mathlouthi M, Koenig JL (1987) Vibrational spectra of carbohydrates. Adv Carbohydr Chem Biochem 44:7–89Google Scholar
  60. Mercader J (2002) Forest people: the role of African rainforests in human evolution and dispersal. Evol Anthropol 11:117–124Google Scholar
  61. Mercader J, Runge F, Vrydaghs L, Doutrelepont H, Ewango CEN, Juan-Tresseras J (2000) Phytoliths from archaeological sites in the tropical Forest of Ituri, Democratic Republic of Congo. Quat Res 54:102–112Google Scholar
  62. Mercader J, Garralda MD, Pearson O, Bailey R (2001) 800 year old human remains from the Ituri tropical forest, Democratic Republic of Congo: the rock shelter site of Matangai Turu NW. Am J Phys Anthropol 115:24–37Google Scholar
  63. Mercader J, Abtosway M, Baquedano E, William Bird RW, Diez-Martin F, Domínguez-Rodrigo M, Favreau J, Itambu M, Lee P, Mabulla A, Patalano R, Pérez-González A, Santonja M, Tucker L, Walde D (2017) Starch contamination landscapes in field archaeology: Olduvai Gorge, Tanzania. Boreas 46:918–934.  https://doi.org/10.1111/bor.12241 ISSN 0300-9483Google Scholar
  64. Mercader J, Akeju T, Brown M, Bundala M, Collins MJ, Copeland L, Crowther A, Dunfield P, Henry A, Inwood J, Itambu I, Kim J-J, Larter S, Longo L, Oldenburg T, Patalano R, Sammynaiken R, Soto M, Tyler R, Xhauflair H (2018) Exaggerated expectations in ancient starch research and the need for new taphonomic and authenticity criteria. Facets 30:777–798.  https://doi.org/10.1139/facets-2017-0126 Google Scholar
  65. Mickelburgh HL, Pagan-Jimenez JR (2012) New insights into the consumption of maize and other food plants in the pre-columbian Caribbean from starch granules trapped in human dental calculus. J Archaeol Sci 39:2468–2478.  https://doi.org/10.1016/j.jas.2012.02.020 Google Scholar
  66. Middleton WD, Rovner I (1994) Extraction of opal phytoliths from herbivore dental calculus. J Archaeol Sci 32:469–473.  https://doi.org/10.1006/jasc.1994.1046 Google Scholar
  67. Osman MO, Jensen SL (1999) Surgical gloves: current probelms. World J Surg 23:630–637.  https://doi.org/10.1007/PL00012360 Google Scholar
  68. Otsuka M, Moritaka H, Fukuba H, Kimura S, Ishihara M (2001) Effects of calcium carbonate and calcium hydroxide on gelatinization and retrodegradation of corn starch. J Jpn Soc Food Sci 48:751–758.  https://doi.org/10.3136/nskkk.48.751 Google Scholar
  69. Pedergnana A, Asryan L, Fernández-Marchena JL, Ollé A (2016) Modern contaminants affecting microscopic residue analysis on stone tools: a word of caution. Micron 86:1–21.  https://doi.org/10.1016/j.micron.2016.04.003 Google Scholar
  70. Perez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Stärke 62:389–420Google Scholar
  71. Pérez S, Baldwin PM, Gallant DJ (2009) Structural features of starch granules I. In: BeMiller J, Whistler R (eds) Starch: chemistry and technology. 3rd edn. Academic Press, Burlington, pp 149–192.  https://doi.org/10.1016/B978-0-12-746275-2.00005-7 Google Scholar
  72. Piperno DR, Dillehay TD (2008) Starch grains on human teeth reveal broad crop diet in northern Peru. Proc Natl Acad Sci 105:19622–19627.  https://doi.org/10.1073/pnas.0808752105 Google Scholar
  73. Power RC, Salazar-García DC, Wittig RM, Henry AG (2014) Assessing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus. J Archaeol Sci 49:160–169.  https://doi.org/10.1016/j.jas.2014.04.016 Google Scholar
  74. Power RC, Salazar-García DC, Straus LG, Morales MRG, Henry AG (2015) Microremains from El Mirón cave human dental calculus suggests a mixed plant-animal subsistence economy furing the Magdalenian in Northern Iberia. J Archaeol Sci 60:39–46.  https://doi.org/10.1016/j.jas.2015.04.003 Google Scholar
  75. Power RC, Salazar-García DC, Henry AG (2016) Dental calculus evidence of Gravettian diet and behavior at Dolni Vestonice and Pavlov. In: Svoboda JA (ed) Dolní Věstonice II: Chronostratigraphy, Paleoethnology, Paleoanthropology. Academy of Sciences of the Czech Republic, Institute of Archeology, Brno, pp 345–352Google Scholar
  76. Power RC, Salazar-García DC, Rubini M, Darlas A, Havarti K, Walker MJ, Hublin JJ, Henry AG (2018) Dental calculus indicates widespread plant use within the stable Neanderthal dietary niche. J Hum Evol 119:27–41.  https://doi.org/10.1016/j.jhevol.2018.02.009 Google Scholar
  77. Ragheb AA, Abd El-Thalouth I, Tawfik S (1995) Gelatinization of starch in aqueous alkaline solutions. Starch-Stärke 47:338–345Google Scholar
  78. Rizzo AA, Scott DB, Bladen HA (1963) Calcification of oral bacteria. Ann N Y Acad Sci 109:14–22.  https://doi.org/10.1111/j.1749-6632.1963.tb13458.x Google Scholar
  79. Rodríguez A, Allue E, Buxó R (2016) Agriculture and livestock economy among prehistoric herders based on plant macro-remains from El Mirador (Atapuerca, Burgos). Quat Int 414:272–284.  https://doi.org/10.1016/j.quaint.2016.01.045 Google Scholar
  80. Rosan B, Lamont RJ (2000) Dental plaque formation. Microbes Infect 2:1599–1607.  https://doi.org/10.1016/s1286-4579(00)01316-2 Google Scholar
  81. Rowles SL (1964) Biophysical studies on dental calculus in relation to periodontal disease. Dent Pract Dent Rec 15:2–7Google Scholar
  82. Schofield PF, Knight KS, van der Houwen JAM, Valsami-Jones E (2004) The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate. Phys Chem Miner 31:606–624Google Scholar
  83. Schroeder HE, Bambauer HU (1966) Stages of calcium phosphate crystallisation during calculus formation. Arch Oral Biol 11:1–14.  https://doi.org/10.1016/0003-9969(66)90112-9 Google Scholar
  84. Schroeder LW, Dickens B, Brown WE (1977) Crystallographic studies of the role of Mg as a stabilizing impurity in ß-Ca3 (PO4)2. II. Refinement of Mg-containing ß-Ca3(PO4)2. J Solid State Chem 22:253–262Google Scholar
  85. Sudarsanan K, Young RA (1969) Significant precision in crystal structural details: Holly Springs hydroxyapatite. Acta Cryst 25:1534–1543.  https://doi.org/10.1107/S0567740869004298 Google Scholar
  86. Swanson MC, Ramalingam M (2002) Starch and natural rubber allergen interaction in the production of latex gloves: a hand-held aerosol. J Allergy Clin Immunol 110:S15–S20.  https://doi.org/10.1067/mai.2002.125338 Google Scholar
  87. Swärdstedt T (1966) Odontological aspects of a Medieval population in the province of Jämtland, mid-Sweden. University of Lund,Google Scholar
  88. Tao D, Zhang J, Zheng W, Cao Y, Sun K, Jin S (2015) Starch grain analysis of human dental calculus to investigate Neolithic consumption of plants in the middle Yellow River Valley, China: a case study on Gouwan site. J Archaeol Sci Rep 2:485–491.  https://doi.org/10.1016/j.jasrep.2015.05.003 Google Scholar
  89. Tas AC (2016) Transformation of brushite (CaHPO4.2H2O) to whitlockite (Ca9Mg (HPO4)(PO4)6) or other CaPs in physiologically relevant solutions. J Am Ceram Soc 99:1200–1206Google Scholar
  90. Tavarone A, de los Milagros Colobig M, Passeggi E, Fabra M (2018) Cleaning protocol of archaeological dental calculus: a methodological proposal for vegetable microremains analysis. Am J Phys Anthropol 167:416–422.  https://doi.org/10.1002/ajpa.23630 Google Scholar
  91. Tromp M, Dudgeon JV (2015) Differentiating dietary and non-dietary microfossils extracted from human dental calculus: the importance of sweet potato to ancient diet on Rapa Nui. J Archaeol Sci 54:54–63.  https://doi.org/10.1016/j.jas.2014.11.024 Google Scholar
  92. Tromp M, Buckley H, Geber J, Matisoo-Smith E (2017) EDTA decalcification of dental calculus as an alternate means of microparticle extraction from archaeological samples. J Archaeol Sci Rep 14:461–466.  https://doi.org/10.1016/j.jasrep.2017.06.035 Google Scholar
  93. Tsuda H, Arends J (1993) Raman spectra of human dental calculus. J Dent Res 72:1609–1613Google Scholar
  94. Vergès JM, Alluè E, Fontanals M, Morales JI, Martín P, Carrancho Á, Expósito I, Guardiola M, Lozano M, Marsal R, Oms X, Euba I, Rodríguez A (2016) El Mirador cave (Sierra de Atapuerca, Burgos, Spain): a whole perspective. Quat Int 414:236–243.  https://doi.org/10.1016/j.quaint.2016.01.044 Google Scholar
  95. Wang Y-J, Wang L (2002) Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides. Starch-Stärke 54:25–30Google Scholar
  96. Warinner C, Hendy J, Speller C, Cappellini E, Fischer R, Trachsel R, Arneborg J, Lynnerup N, Craig OE, Swallow DM, Fotakis A, Christensen RJ, Olsen JV, Liebert A, Montalva N, Fiddyment S, Charlton S, Mackie M, Canci A, Bouwman A, Ruhi F, Gilbert MTP, Collins M (2014) Direct evidence of milk consumption from ancient human dental calculus. Nat Sci Rep 4:1–6Google Scholar
  97. Warinner C, Speller C, Collins MJ (2015) A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos Trans R Soc B 370:20130376.  https://doi.org/10.1098/rstb.2013.0376 Google Scholar
  98. Warinner C, Herbig A, Mann A, Fellows Yates JA, Weiß CL, Burbano HA, Orlando L, LKrause J (2017) A robust framework for microbial archaeology. Annu Rev Genomics Hum Genet 18:321–356.  https://doi.org/10.1146/annurev-genom-091416-035526 Google Scholar
  99. Wesolowski V, de Souza SMFM, Reinhard KJ, Ceccantini G (2010) Evaluating microfossil content of dental calculus from Brazilian sambaquis. J Archaeol Sci 37:1326–1338Google Scholar
  100. Weyrich LS, Dobney K, Cooper A (2015) Ancient DNA analysis of dental calculus. J Hum Evol 79:119–124.  https://doi.org/10.1016/j.jhevol.2014.06.018 Google Scholar
  101. Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, Morris AG, Alt KW, Caramelli D, Dresely V, Farrell M, Farrer AG, Francken M, Gully M, Haak W, Hardy K, Harvati K, Held P, Holmes EC, Kaidonis J, Lalueza-Fox C, de la Rasilla M, Rosas A, Semal P, Soltysiak A, Townsend G, Usai D, Wahl J, Huson DH, Dobney K, Cooper A (2017) Neanderthal behavior, diet, and disease inferred from ancient DNA in dental calculus. Nature 544:357–372Google Scholar
  102. Whittam MA, Noel TR, Ring SG (1990) Melting behaviour of A- and B-type crystalline starch. Int J Biol Macromol 12:359–362.  https://doi.org/10.1016/0141-8130(90)90043-A Google Scholar
  103. Wolstenholme GEW, O'Connor M (2009) Caries-resistant teeth vol 964. John Wiley and Sons,Google Scholar
  104. Yamada T, Morimoto Y, Hisamatsu M (1986) Effect of citric acid on potato starch gelatinization. Starch-Stärke 38:264–268Google Scholar
  105. Zhang B, Dhital S, Flanagan BM, Gidley MJ (2014) Mechanism for starch granule ghost formation deduced from structural and enzyme digestion properties. J Agric Food Chem 62:760–771.  https://doi.org/10.1021/jf404697v Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • María Soto
    • 1
  • Jamie Inwood
    • 1
  • Siobhán Clarke
    • 1
  • Alison Crowther
    • 2
    • 3
  • Danielle Covelli
    • 4
  • Julien Favreau
    • 1
  • Makarius Itambu
    • 1
    • 5
  • Steve Larter
    • 6
  • Patrick Lee
    • 1
    • 7
  • Marina Lozano
    • 8
  • Jason Maley
    • 4
  • Aloyce Mwambwiga
    • 1
    • 9
  • Robert Patalano
    • 1
  • Ramaswami Sammynaiken
    • 4
  • Josep M Vergès
    • 8
    • 10
  • Jianfeng Zhu
    • 4
  • Julio Mercader
    • 1
    Email author
  1. 1.Department of Anthropology and ArcheologyUniversity of CalgaryCalgaryCanada
  2. 2.School of Social ScienceThe University of QueenslandSt LuciaAustralia
  3. 3.Department of ArcheologyMax Planck Institute for the Science of Human HistoryJenaGermany
  4. 4.Saskatchewan Structural Sciences CentreUniversity of SaskatchewanSaskatoonCanada
  5. 5.Department of Archeology and Heritage StudiesUniversity of Dar es SalamDar es SalaamTanzania
  6. 6.Petroleum Reservoir Group (PRG), Department of GeoscienceUniversity of CalgaryCalgaryCanada
  7. 7.Department of AnthropologyUniversity of TorontoTorontoCanada
  8. 8.Institut Català de Paleoecologia Humana i Evolució Social (IPHES)TarragonaSpain
  9. 9.National Natural History MuseumArushaTanzania
  10. 10.Àrea de PrehistòriaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations