Archaeological and Anthropological Sciences

, Volume 11, Issue 9, pp 4829–4846 | Cite as

Metal flow in the late Bronze Age across the Friuli-Venezia Giulia plain (Italy): new insights on Cervignano and Muscoli hoards by chemical and isotopic investigations

  • Caterina CanovaroEmail author
  • Ivana Angelini
  • Gilberto Artioli
  • Paolo Nimis
  • Elisabetta Borgna
Original Paper


Numerous metal hoards found in the Friuli-Venezia Giulia plain, Northeastern Italy, are archaeologically dated to the Recent and Final Bronze Age. Here, the results of an archaeometric study of the copper-alloy artifacts and ingots from two such hoards (Cervignano del Friuli and Muscoli, Udine) are presented. The mineralogical, metallographic, and chemical analyses of the copper objects indicate that the metallurgical process employed copper derived almost exclusively from chalcopyrite (±sphalerite, galena) as ore charge. Distinct typologies of ingots (plano-convex and parallel-surfaces) are characterized by different degrees of metal refining. Tools and weapons are made of carefully refined and compositionally controlled bronze alloys, containing specific proportions of tin. These observations point out a high level of technological knowledge in metallic copper extraction and use. The chemical and lead isotope compositions of most analyzed ingots and artifacts suggest exploitation of copper deposits from the Southeastern Alps, including deposits from the Valsugana area and other mining districts of the Trentino-Alto Adige region. One peculiar sample characterized by a significant Sb content suggests possible mixing with “local” fahlerz copper from Carnia and one other ingot, showing a highly radiogenic lead isotope composition may be interpreted as copper from southern Tuscany or as a mixed metal incorporating a small quantity of copper from northerly Alpine sources such as Mitterberg.


Provenancing Late Bronze Age copper alloys Lead isotopes analysis Archaeometallurgy Northeastern Italy 



The project benefited from the collaboration with the Soprintendenza Archeologia, Belle Arti e Paesaggio of Friuli-Venezia Giulia and with the Museo Archeologico Nazionale of Aquileia. In particular, we are grateful to Dr. Roberto Michieli who kindly made the materials available for this study. We wish to thank in particular Dr. Paola Ventura, director of the Museum of Aquileia, and Daniele Pasini for the technical support received during the sampling step. We are also thankful to I.M. Villa for his help and support during isotopic analysis.

Funding Information

The authors acknowledge financial support by Progetto di Ateneo 2013 CPDA138741 “Copper metallogenesis and provenancing in the Alpine realm” (University of Padua).


  1. AAcP (2018), Alpine Archaeocopper Project. (accessed 27 August 2018)
  2. Addis A (2013) Late Bronze Age metallurgy in the Italian Eastern Alps: copper smelting slags and mine exploitation, PhD dissertation, University of PaduaGoogle Scholar
  3. Anelli F (1949) Vestigia protostoriche dell’agro aquileiese. Aquileia Nostra 20:1–24Google Scholar
  4. Angelini I (2005) Le armi della necropoli di Olmo di Nogara: analisi chimiche, metallografiche e microstrutturali. In “La Necropoli dell’Età del Bronzo all’Olmo di Nogara (Verona)”. Collana Memorie del Museo Civico di Storia Naturale di Verona, Sezione Scienze dell’Uomo 8, Verona, pp. 515-527Google Scholar
  5. Angelini A, Angelini I, Artioli G, Nimis P, Villa I (2015) Tipologia e archeometria dei bronzi di Castel de Pedena (San Gregorio nelle Alpi, Belluno). In: Leonardi G., Tinè V. (Eds.), Preistoria e Protostoria del Veneto. Studi di Preistoria e Protostoria 2. Grafiche Antiga, Crocetta del Montello (TV), Italy, 881–866Google Scholar
  6. Artioli G, Angelini I, Tecchiati U, Pedrotti A (2015) Eneolithic copper smelting slags in the Eastern Alps: local patterns of metallurgical exploitation in the Copper Age. J Archaeol Sci 63:78–83. CrossRefGoogle Scholar
  7. Artioli G, Angelini I, Nimis P, Villa IM (2016) A lead-isotope database of copper ores from the Southeastern Alps: a tool for the investigation of prehistoric copper metallurgy. J Archaeol Sci 75:27–39. CrossRefGoogle Scholar
  8. Baxter MJ, Beardah CC, Westwood S (2000) Sample size and related issues in the analysis of lead isotope data. J Archaeol Sci 27(10):973–980. CrossRefGoogle Scholar
  9. Baxter MJ (2003) Statistics in archaeology. Arnold, LondonGoogle Scholar
  10. Belshaw NS, Freedman PA, O’Nions RK, Frank M, Guo Y (1998) A new variable dispersion double–focusing plasma mass spectrometer with performance illustrated for Pb isotopes. Int J Mass Spectrom Ion Process 181:51–58. CrossRefGoogle Scholar
  11. Benvenuti M, Chiarantini L, Norfini L , Casini A, Guideri S, Tanelli G (2003) The “Etruscan tin”: a preliminary contribution from researches at Monte Valerio and Baratti-Populonia (southern Tuscany, Italy), XIVth Congress of the International Union of Prehistoric and Protohistoric Sciences, Vol. 1199, XIVth Congress of the International Union of Prehistoric and Protohistoric Sciences - Liege, Belgio, pp. 55-65, 2-8 SettembreGoogle Scholar
  12. Bernabò Brea M, Cardarelli A, Cremaschi M (1997) Le Terramare. La più antica civiltà padana. Electa, MilanoGoogle Scholar
  13. Bettelli M, Borgna E, Levi ST (2018) Crisis years and pottery systems. An overview of the Italian Late Bronze Age, in Caloi I., Langohr Ch, eds, Technology in crisis. Technological Changes in ceramic production during periods of trouble, Louvain 2018, pp. 217–240Google Scholar
  14. Bianco Peroni V (1970) Le spade nell’Italia Continentale, PBF IV, 1, MunchenGoogle Scholar
  15. Bietti Sestieri AM (2010) L’ Italia nell’età del bronzo e del ferro. Dalle palafitte a Romolo (2200-700 a. C.), Carocci Editore, ISBN 8843052071Google Scholar
  16. Borgna E (2001) I ripostigli del Friuli: proposta di seriazione cronologica e di interpretazione funzionale. Rivista di Scienze Preistoriche 51:289–335Google Scholar
  17. Borgna E (2004) I ripostigli del Friuli, in Cocchi Genik D. (Edited by), L’età del Bronzo Recente in Italia. Atti del Congresso Nazionale di Lido di Camaiore, 26-29 ottobre 2000, Viareggio, pp. 90-100Google Scholar
  18. Borgna E (2009) Patterns of bronze circulation and deposition in the Northern Adriatic at the close of the Late Bronze Age, in Borgna E and Cassola Guida P (edited by): From the Aegean to the Adriatic: social organizations, modes of exchange and interaction in postpalatial times (12th-11th B.C.), Quasar Ed., Roma, ISBN 978-88-7140-370-0, pp. 289-310Google Scholar
  19. Borgna E, Cassola Guida P, Mihovilić K, Tasca G, Teržan B (2018a) Il Caput Adriae tra Bronzo Antico e Bronzo Recente, in Preistoria e Protostoria del Caput Adriae, edited by Borgna E, Cassola Guida P, Corazza S, Studi di Preistoria e Protostoria 5, Istituto Italiano di Preistoria e Protostoria, Firenze, pp. 75–95Google Scholar
  20. Borgna E, Cassola Guida P, Corazza S, Mihovilić K, Tasca G, Teržan B, Vitri S (2018b) Il Caput Adriae tra Bronzo finale e antica età del ferro, in Preistoria e Protostoria del Caput Adriae, edited by Borgna E, Cassola Guida P, Corazza S, Studi di Preistoria e Protostoria 5, Istituto Italiano di Preistoria e Protostoria, Firenze, pp. 97–118. (accessed 27 August 2018)
  21. Canovaro C, Angelini I, Artioli G, Borgna E (2014) Analisi archeometallurgiche di pani e panelle provenienti dai ripostigli di Cervignano e Muscoli (Udine), in Atti del 35° Convegno Nazionale AIM, Roma 5–7 November 2014, ISBN 978-88-98990-01-6Google Scholar
  22. Canovaro C, Angelini I, Borgna E, Artioli G (2018) Analisi chimiche e metallografiche di ripostigli dell’area aquileiese. In: Borgna E, Cassola Guida P, Corazza S (eds) Preistoria e Protostoria del Caput Adriae (Studi di Protostoria 5), Istituto Italiano di Preistoria e protostoria, Firenze, pp 343–354Google Scholar
  23. Carancini GL (1984) Le asce dell’Italia Continentale, II, PBF IX, 12, MunchenGoogle Scholar
  24. Carancini GL and Peroni R (1999) L’età del bronzo in Italia: per una cronologia della produzione metallurgica, PerugiaGoogle Scholar
  25. Casagrande A, Garagnani GL, Spinedi P, Pellegrini E (1994) Microstructural and analytical characterization of bronze age copper ingots and some metallic artifacts, PACT, 45, II, 7Google Scholar
  26. Cassola P and Vitri S (1997) Gli insediamenti arginati della pianura friulana nell’età del bronzo. In: Le Terramare: La più antica civiltà padana. Modena, Foro Boario, 15 marzo–1 giugno 1997.Milano: ElectaGoogle Scholar
  27. Cierny J, Weisgerber G, Perini R (1992) Ein spätbronzezeitlicher Hüttenplatz in Bedollo/Trentino, vol 8. Universitätsforschungen Prähistorische Archäologie, Bonn, pp 75–82Google Scholar
  28. Cierny J, Hauptmann A, Hohlmann B, Marzatico F, Schröder B, Weisgerber G (1995) Endbronzezeitliche Kupferproduktion im Trentino. Ein Vorbericht, Der Anschnitt, 47/3, Deutsches Bergbau–Museum, Bochum, pp. 82–91Google Scholar
  29. Cierny J (1997) Rame, stagno e bronzo. In: Endrizzi L, Marzatico F (eds) Ori delle Alpi, Catalogo della mostra. Castello del Buonconsiglio, Trento, pp 61–70Google Scholar
  30. Craddock PT (2000) From hearth to furnace: evidences for the earliest metal smelting technologies in the Eastern Mediterranean. In: Paléorient, vol. 26, n°2, La pyrotechnologie à ses débuts. Evolution des premières industries faisant usage du feu, sous la direction de Andreas Hauptmann, pp. 151–165. DOI :
  31. Craddock PT, Meeks ND (1987) Iron in ancient copper. Archaeometry 29(2):187–204CrossRefGoogle Scholar
  32. Cupitò M (2006) Tipocronologia del Bronzo medio e recente tra l’Adige e il Mincio sulla base delle evidenze funerarie, Saltuarie dal Laboratorio del Piovego, 7, PadovaGoogle Scholar
  33. De Marinis RC (2011) La Metallurgia a sud delle Alpi. In: Marzatico F, Gebhard R, Gleirscher P (eds) Le Grandi vie delle civiltà. Relazioni fra il Mediterraneo e il Centro Europa dalla Preistoria alla Romanità, Trento, pp 127–135Google Scholar
  34. Girelli D (2013) Panelle, Lingotti e barre. La circolazione delle leghe a base di rame attraverso il Friuli-Venezia Giulia nelle fasi tarde dell’età del bronzo, in Magnani S (Edited by), Le aree montane come frontiere. Spazi di interazione e connettività, Atti del convegno internazionale, Udine 2009, Roma, pp. 569-577Google Scholar
  35. Giumlia-Mair A (2000) Bronze Technology in the Eastern Alpine Regions between the Final Bronze Age and the Early Iron Age. Proceedings of the “Workshop on Ancient Metallurgy between Oriental Alps and Pannonian Plain”, (Giumlia–Mair ed.), 29–30 Ottobre, Dipartimento di Ingegneria dei Materiali e Chimica Applicata, Università di Trieste. Quaderni di Aquileia Nostra, 8, pp. 77–91Google Scholar
  36. Giumlia-Mair A (2003) Iron Age tin in the Oriental Alps. Proceedings of the Colloquium The problems of Early Tin, Giumlia–Mair A and Lo Schiavo F (Eds.), XIV International Congress of Prehistoric and Protohistoric Sciences, Liège, September 2001, Le problème de l’ètain à l’origine de la mètallurgie/ The Problem of Early Tin, BAR International Series 1199, Oxford, pp. 93–108Google Scholar
  37. Giumlia-Mair A (2005) Copper and copper alloys in the Southeastern Alps: an overview. Archaeometry 47(2):275–292. CrossRefGoogle Scholar
  38. Giumlia-Mair A (2009) Ancient metallurgical traditions and connections around the Caput Adriae. J Min Metall B 45(2):141–222. CrossRefGoogle Scholar
  39. Hauptmann A, Maddin R, Prange M (2002) On the structure and composition of copper and tin ingots excavated from the shipwreck of Uluburun. Bull Am Sch Orient Res 328:1–30CrossRefGoogle Scholar
  40. Hirata T (1996) Lead isotopic analysis of NIST standard reference materials using multiple collector–inductively coupled plasma mass spectrometry coupled with modified external correction method for mass discrimination effect. Analyst 121:1407–1411. CrossRefGoogle Scholar
  41. Hsu YK, Rawson J, Pollard AM, Ma Q, Luo F, Yao PH, Shen CC (2018) Application of kernel density estimates to lead isotope compositions of bronzes from Ningxia, Northwest China. Archaeometry 60:128–143. CrossRefGoogle Scholar
  42. Huska A, Powell W, Mitrovic S, Bankoff HA, Bulatovic A, Filipovic V, Boger R (2014) Placer tin ores from Mt. Cer, West Serbia, and their potential exploitation during the Bronze Age. Geoarchaeology: An International Journal 29:477–449CrossRefGoogle Scholar
  43. Koppel V and Schroll E (1983) Lead isotopes of paleozoic, stratabound to stratiform galena bearing sulfide deposits of eastern alps (Austria): implications for their geotectonic setting Schweiz Mineral Petrogr Mitt v. 63, pp. 347–360Google Scholar
  44. Koppel V and Weber L (1997) Handbuch der Lagerstätten der Erze, Industrieminerale und Energierohstoffe Österreichs – Erläuterungen zur Metallogenetischen Karte v. Österreich 1 : 500.000 unter Einbeziehung der Industrieminerale u. Energierohstoffe. Arch. f. Lagerst. forsch. Geol. B.–A., 19, Wien, pp. 1–607Google Scholar
  45. Ling J, Stos-Gale Z, Grandin L, Billström K, Hjärthner-Holdar E, Persson PO (2014) Moving metals II: provenancing Scandinavian Bronze Age artefacts by lead isotope and elemental analyses. J Archaeol Sci 41:106–132. CrossRefGoogle Scholar
  46. Ling J, Hjärthner-Holdar E, Grandin L, Stos-Gale Z, Kristiansen K, Melheim L, Artioli G, Angelini I, Krause R Canovaro C (submitted) Moving metals IV: swords, metal sources and trade networks in Bronze Age Europe, J Archaeol Sci.Google Scholar
  47. Liversage D (1994) Interpreting composition patterns in ancient bronze: the Carpathian Basin. Acta Archaeologica 65:57–134Google Scholar
  48. Maddin R, Wheeler TS, Muhly JD (1980) Distinguishing artifacts made of native copper. J Archaeol Sci 7:211–225CrossRefGoogle Scholar
  49. Mangou H, Ioannou PV (2000) Studies of the Late Bronze Age copper–based ingots found in Greece. The Annual of the British School at Athens 95:207–217. CrossRefGoogle Scholar
  50. Marchesetti C (1903) Castellieri preistorici di Trieste e della regione Giulia. Museo civico di Storia naturale, TriesteGoogle Scholar
  51. Melheim L, Grandin L, Persson PO, Billström K, Stos-Gale Z, Ling J, Williams A, Angelini I, Canovaro C, Hjärthner-Holdar E, Kristiansen K (2018) Moving metals III: possible origins for copper in Bronze Age Denmark based on lead isotopes and geochemistry. J Archaeol Sci 96:85–105. CrossRefGoogle Scholar
  52. Merkel JF (1983) Summary of experimental results for LBA copper smelting and refining. MASCA J 2:173–178Google Scholar
  53. Nardini A, Canovaro C, Angelini I (in press) Il Ripostiglio di Celò (Pulfero, UD), West & East (Rivista della Scuola Interateneo di Specializzazione in Beni Archeologici, Università di Trieste, Udine, Venezia), Edizioni Università di Trieste, ISSN (online) 2499–7331Google Scholar
  54. Nimis P, Omenetto P, Giunti I, Artioli G, Angelini I (2012) Lead isotope systematics in hydrothermal sulphide deposits from the central–eastern Southalpine (northern Italy). Eur J Mineral 24:23–37. CrossRefGoogle Scholar
  55. Nimis P, Omenetto P, Stasi G, Canovaro C, Dal Sasso G, Artioli G, Angelini I (2018) Lead isotope systematics in ophiolite associated sulphide deposits from the Western Alps and Northern Apennine (Italy): from oceanisation to metamorphism. Eur J Mineral 30(1):17–31CrossRefGoogle Scholar
  56. OXALID (2018), Oxford archaeological lead isotope database. (accessed 27 August 2018)
  57. Pellegrini G (1911) Ripostiglio di oggetti cupro–enei e spada antichissima di bronzo scoperti presso Castions di Strada (Udine). Bullettino di Paletnologia Italiana, 37, Parma, pp. 231–236Google Scholar
  58. Pearce MJ (2004) The Italian Bronze Age. In: Ancient Europe 8000 B.C.-A.D 1000: encyclopedia of the Barbarian world Volume 1: The Mesolithic to Copper Age (c.80002000 B.C.). Ed. by Bogucki P, Crabtree P. New York: Charles Scribner’s Sons, pp. 34–42Google Scholar
  59. Pernicka E and Salzani P (2011) Remarks on the analyses and future prospects. In: A. Aspes (Hrsg.): I bronzi del Garda – Valorizzazione delle collezioni di bronzi preistorici di uno dei più importante centri metallurgici dell’Europa del II° millennio a.C. Memorie del Museo Civico di Storia Naturale di Verona – 2. serie, Sezione delle Scienze dell’Uomo 11, pp. 89–98Google Scholar
  60. Pernicka E, Lutz J, Stoellner T (2016) Bronze Age Copper produced at Mitterberg, Austria, and its distribution. Archaeologia Austriaca 100:19–55CrossRefGoogle Scholar
  61. Peroni R and Carancini G (1997) La Koinè metallurgica, in Bernabo Brea M., Cardarelli A., Cremaschi M. (Eds): Terramare la più antica civiltà padana, Modena, pp. 595–601Google Scholar
  62. Pigorini L (1904) Ripostigli di bronzi arcaici nell’Italia austriaca, Bullettino di Paletnologia Italiana, nr 3, pp. 138–142Google Scholar
  63. Pigorini L (1895) Antichi pani di rame e di bronzo da fondere rinvenuti in Italia. Bullettino di Paletnologia italiana 21:5–38Google Scholar
  64. Preuschen E (1973) Estrazione mineraria dell’Età del Bronzo nel Trentino. Preistoria Alpina – Rendiconti 9:113–150Google Scholar
  65. Rapp GR (2013) Archaeomineralogy. Media, Springer Science & BusinessGoogle Scholar
  66. Rehkamper M, Halliday AM (1998) Accuracy and long–term reproducibility of lead isotopic measurements by MC–ICP–MS using an external method for correction of mass discrimination. Int J Mass Spectrom Ion Process 58:123–133. CrossRefGoogle Scholar
  67. Rehkämper M, Mezger K (2000) Investigation of matrix effects for Pb isotope ratio measurements by multiple collector ICP–MS: verification and application of optimized analytical protocols. J Anal Atom Spectrom 15(11):1451–1460. CrossRefGoogle Scholar
  68. Sabatini BJ (2015) The As-Cu-Ni system: a chemical thermodynamic model for ancient recycling. JOM 67(12):2984–2992. CrossRefGoogle Scholar
  69. Scaife B, Budd P, McDonnell JG, Pollard AM (1999) Lead isotope analysis, oxide ingots and the presentation of scientific data in archaeology. In metals in antiquity, eds. Young, S. M. M., Pollard, A. M., Budd, P., and Ixer, R. A. F., BAR International Series 792, Oxford, Archaeopress, pp. 122–133Google Scholar
  70. Scott DA (2012) Ancient metals: microstructure and metallurgy volume 1. Copper and copper alloys. CSP: Conservation Science PressGoogle Scholar
  71. Simeoni G, Corazza S (2011) Di terra e di ghiaia, Tumuli e Castellieri del Medio Friuli tra Europa ed. Adriatico, La GrameGoogle Scholar
  72. Stos ZA (2009) Across the wine dark seas. Sailor tinkers and royal cargoes in the Late Bronze Age eastern Mediterranean. In: Shortland AJ, Freestone IC, Rehren T (eds) From mine to microscope e advances in the study of ancient technology. Oxbow Books, Oxford, pp 163–180Google Scholar
  73. Stos-Gale ZA, Gale NH (2009) Metal provenancing using isotopes and the Oxford archaeological lead isotope database (OXALID). Archaeol Anthropol Sci 1:195–213. CrossRefGoogle Scholar
  74. Tasca G (2011) Tipologia e cronologia della produzione ceramica del Bronzo medio-recente nella Bassa Pianura Friulana, PhD dissertation, University of PaduaGoogle Scholar
  75. Tuniz C, Confalonieri L, Milazzo M, Monichino M, Katsanos A (1986–87) Uso di tecniche atomiche e nucleari per lo studio archeologico di antichi oggetti metallici. Bollettino della Società Adriatica di Scienze 69:17–27Google Scholar
  76. Turk P (1996) The dating of Late Bronze Age hoards, in Terzan B., Hoards and individual metal finds from the eneolithic and Bronze Ages in Slovenia II, LjubljanaGoogle Scholar
  77. Tylecote RF (1981) International archaeological symposium: early metallurgy in Cyprus 4000–500 BC, Cyprus, p. 81Google Scholar
  78. Tylecote RF (1992) A history of metallurgy (2nd edition). The Metals Society, LondonGoogle Scholar
  79. Tylecote RF, Ghaznavi HA, Boydell PJ (1977) Partitioning of trace elements between the ores, fluxes, slags and metal during the smelting of copper. J Archaeol Sci 4:305–333CrossRefGoogle Scholar
  80. Villa IM (2009) Lead isotopic measurements in archeological objects. Archaeol Anthropol Sci 1(3):149–153CrossRefGoogle Scholar
  81. Vitri S (1983) La raccolta preistorica del Museo di Aquileia, In: I Musei di Aquileia 1, pp. 117-126Google Scholar
  82. Vitri S (1984) Cervignano (Udine), Aquileia Nostra, nr 55, pp. 268–269Google Scholar
  83. Vitri S (1990) Carte archeologiche e schede di sito, in Desinan CC. Toponomastica e archeologia del Friuli prelatino con note di aggiornamento di protostoria friulana, Pordenone, pp 158–174Google Scholar
  84. Vitri S (1991) Cervignano (via Lazzaro). Relazioni della Soprintendenza per i beni AAAAS del Friuli-Venezia Giulia 8:130–133Google Scholar
  85. Vitri S (1999) Nuovi ritrovamenti di Bronzi protostorici in Friuli. Contributo alla definizione del ruolo del Caput Adriae nell’Età del Bronzo Finale AN LXX:289–296Google Scholar
  86. White WM, Albarède F, Télouk P (2000) High–precision analysis of Pb isotope ratios by multi–collector ICP–MS. Chem Geol 167(3–4):257–270. CrossRefGoogle Scholar
  87. Zucchini R (1998) Miniere e mineralizzazioni nella provincia di Udine. Aspetti storici e mineralogici, Edizioni del Museo Friulano di Storia Naturale, UdineGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of PadovaPadovaItaly
  2. 2.INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei MaterialiFirenzeItaly
  3. 3.Department of Cultural HeritageUniversity of PadovaPadovaItaly
  4. 4.Department of Humanities and Cultural HeritageUniversity of UdineUdineItaly

Personalised recommendations