Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 9, pp 4755–4767 | Cite as

Revisiting the chronology of the Early Iron Age in the north-eastern Iberian Peninsula

  • Miriam Gómez-PaccardEmail author
  • Mercedes Rivero-Montero
  • Annick Chauvin
  • David García i Rubert
  • Alicia Palencia-Ortas
Original Paper

Abstract

The chronology of the Late Bronze Age and the earliest stages of the Iron Age in the Mediterranean is an important topic of debate since the study of both local social dynamics and trade and colonial activity around the Mediterranean requires obviously well-established chronological frameworks. However, the exact chronology of the Early Iron Age in the Mediterranean region is still a problematic issue today since different, and in some cases unbalanced, sources of information (historical texts, material culture sequences, and radiocarbon dating results) are used. The NE Iberian Peninsula is not an exception and different time periods are proposed in the literature for the Early Iron Age. Here, and in order to provide a new and an independent input to feed this debate, we apply the archeomagnetic dating method to four archeological hearths from the Sant Jaume Complex, a set of several Early Iron Age archeological sites located in the north-eastern part of the Iberian Peninsula. The archeomagnetic dating results suggest that the abandonment of the studied structures (that can be linked to the abandonment of the archeological sites) most probably occurred before 650 BC, and therefore invalidate the age commonly ascribed to the Early Iron Age sites in this area. Our study provides, hence, new evidences that the traditional view of human settlement development in the NE Iberian Peninsula should be revisited.

Keywords

Archeomagnetic dating Geomagnetic field changes Early Iron Age Iberian Peninsula 

Notes

Acknowledgments

We warmly thank P. Roperch (Géosciences-Rennes) for sharing data treatment facilities. We also thank A. Molina-Cardín and E. Delso for their help with field and laboratory work. AC is also grateful to LP´s music.

Funding information

This project was supported by the CGL2015-63888-R (MINECO/FEDER) project and by the Ramón y Cajal program (MGP) of the Spanish Ministry of Economy and Competitiveness. Financial support was also given by the PICS International Program for Scientific Cooperation (CNRS-France and CSIC-Spain).

References

  1. Barceló JA, Cappuzo G, Bogdanovic (2014) Modeling expansive phenomena in early complex societies: the transition from Bronze Iron Age in prehistoric Europe. J Archaeol Method Theory 21: 486–510.  https://doi.org/10.1007/s10816-013-9195-2
  2. Bea D, Diloli J, Garcia i Rubert D, Moreno I, Moret P (2012) Arquitectura de prestigio y aristocracias indígenas. Iberos del Ebro, Actas del II Congreso Internacional, Sèrie Documenta 25:51–70Google Scholar
  3. Brun P (1991) Systèmes économiques et organisations sociales au Premier âge du Fer, dans la zone nord-alpine. Les Alpes à l’âge du Fer: Actes du Xe colloque sur l’âge du Fer tenu à Yenne-Chambéry. Paris, CNRS Revue archéologique de Narbonnaise suppl 22:313–332Google Scholar
  4. Brun P, Chaume B, Dhennequin L, Quilliec B (2009) Le passage de l’âge du Bronze à l’âge du Fer … au fil de l’épée. Revue Archéologique de l’Est 27:477–485Google Scholar
  5. Butler RF (1992) Paleomagnetism: magnetic domains to geological terranes. Blackwell, BostonGoogle Scholar
  6. Day R, Fuller MD, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain size and composition dependence. Phys Earth Planet Inter 13:260–266.  https://doi.org/10.1111/j.1365-246X.2006.02862.x CrossRefGoogle Scholar
  7. Dunlop J (2002a) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc). 1. Theoretical curves and tests using titanomagnetite data. J Geophys Res 107(B3):2056CrossRefGoogle Scholar
  8. Dunlop J (2002b) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc). 2. Application to data for rocks, sediments and soils. J Geophys Res 107(B3):2057CrossRefGoogle Scholar
  9. Fisher RA (1953) Dispersion on a sphere. Proc Roy Soc London Ser A 217:295–305CrossRefGoogle Scholar
  10. Gallet Y, Genevey A, Le Goff M (2002) Three millennia of directional variation of the Earth’s magnetic field in western Europe as revealed by archaeological artefacts. Phys Earth Planet Inter 131:81–89CrossRefGoogle Scholar
  11. Garcia i Rubert D (2011) Nuevas aportaciones al estudio de los patrones de asentamiento en el nordeste de la Península Ibérica durante la Primera Edad del Hierro. El caso del Complejo Sant Jaume Trabajos de Prehistoria 68-2:331–352CrossRefGoogle Scholar
  12. Garcia i Rubert D (2015) Jefes del Sénia. Sobre la emergencia de jefaturas durante la primera edad del Hierro en el nordeste de la península Ibérica. Munibe Antropologia-Arkeologia 66:223–243CrossRefGoogle Scholar
  13. Garcia i Rubert D, Gracia F, Moreno I (2016) L’assentament de la primera edat del ferro de Sant Jaume (Alcanar, Montsià). Els espais A1, A3, A4, C1, Accés i T2 del sector 1. Estudis del GRAP 1 Ed Publicacions i Edicions de la Universitat de Barcelona, Barcelona, pp 445Google Scholar
  14. Gómez-Paccard M, Beamud E (2008) Recent achievements in archaeomagnetic dating in the Iberian Peninsula: application to Roman and Mediaeval Spanish structures. J Archaeol Sci 35:1389–1398CrossRefGoogle Scholar
  15. Gómez-Paccard M, Catanzariti G, Ruiz-Martínez VC, McIntosh G, Núñez JI, Osete ML, Chauvin A, Lanos P, Tarling DH, Bernal-Casasola D, Thiriot J, “Archaeological Working Group” (2006a) A catalogue of Spanish archaeomagnetic data. Geophys J Int 166: 1125–1143CrossRefGoogle Scholar
  16. Gómez-Paccard M, Chauvin A, Lanos P, McIntosh G, Osete ML, Catanzariti G, Ruiz-Martínez VC, Núñez JI (2006b) The first archaeomagnetic secular variation curve for the Iberian Peninsula. Comparison with other data from Western Europe and with global geomagnetic field models. Geochem. Geophys Geosyst 7(12):Q12001.  https://doi.org/10.1029/2006GC001476 CrossRefGoogle Scholar
  17. Gómez-Paccard M, Beamud E, McIntosh G, Larrasoaña JC (2013) New archaeomagnetic data recovered from the study of three roman kilns from N-E Spain: a contribution to the Iberian Palaeosecular variation curve. Archaeometry 55(1):159–177.  https://doi.org/10.1111/j.1475-4754.2012.00675.x CrossRefGoogle Scholar
  18. Guilaine J (1972) L’age du bronze en Languedoc occidental, Rouissillon, Ariège. Mem Soc Préhistorique Française T9:460Google Scholar
  19. Hellio G, Gillet N, Bouligand C, Jault D (2014) Stochastic modelling of regional archaeomagnetic series. Geophys J Int 199:931–943CrossRefGoogle Scholar
  20. Hervé G, Lanos P (2018) Improvements in archaeomagnetic dating in Western Europe from the late Bronze to the Late Iron Ages: an alternative to the problem of the Hallstattian radiocarbon plateau. Archaeometry 60(4):870–883.  https://doi.org/10.1111/arcm.12344 CrossRefGoogle Scholar
  21. Hervé G, Chauvin A, Lanos P (2013) Geomagnetic field variations in Western Europe from 1500 BC to 200 AD. Part I: directional secular variation curve. Phys Earth Planet Inter 218:1–13.  https://doi.org/10.1016/j.pepi.2013.02.003 CrossRefGoogle Scholar
  22. Hervé G, Faβbinder J, Gilder SA, Metzner-Nebelsick C, Gallet Y, Genevey A, Schnepp E, Geisweid L, Pütz A, Reuβ S, Wittenborn F, Flontas A, Linke R, Riedel G, Walter F, Wittenborn I (2017) Fast geomagnetic field intensity variations between 1400 and 400 BCE: new archaeointensity data from Germany. Phys Earth Planet Inter 270:143–156CrossRefGoogle Scholar
  23. Iassanov PG, Nurgaliev DK, Burov DV, Heller F (1998) A modernized coercivity spectrometer. Geol Carpath 49(3):224–226Google Scholar
  24. Kirschvink JL (1980) The least-squares line and plane and the analysis of paleomagnetic data. Geophys J R Astron Soc 62:699–718CrossRefGoogle Scholar
  25. Korte M, Donadini F, Constable CG (2009) Geomagnetic field for 0e3 ka: 2. A new series of time-varying global models. Geochem Geophys Geosyst 10:Q06008.  https://doi.org/10.1029/2008GC002297 CrossRefGoogle Scholar
  26. Kovacheva M, Kostadinova-Avramova M, Jordanova N, Lanos P, Boyadzhiev Y (2014) Extended and revised archaeomagnetic database and secular variation curves from Bulgaria for the last eight millennia. Phys Earth Planet Inter 236:79–94CrossRefGoogle Scholar
  27. Lanos P (2004) Bayesian inference of calibration curves: application to archaeomagnetism, in tools for constructing chronologies: crossing disciplinary boundaries. Springer, London, pp 43–82Google Scholar
  28. Lanos P, Dufresne P (2012) Analyse des données chronologiques par modélisation statistique bayésienne: le logiciel RenDateModel, in L’archéologie à découvert. CNRS Editions, Paris, pp 238–248Google Scholar
  29. Lanos P, Le Goff M, Kovacheva M, Schnepp E (2005) Hierarchical modelling of archaeomagnetic data and curve estimation by moving average technique. Geophys J Int 160:440–476CrossRefGoogle Scholar
  30. Le Goff M (1990) Lissage et limites d’incertitude des courbes de migration polaire : pondération des données et extension bivariante de la statistique de Fisher. C R Acad Sci Sér II 311:1191–1198Google Scholar
  31. Le Goff M, Gallet Y, Genevey A, Warmé N (2002) On archaeomagnetic secular variation curves and archaeomagnetic dating. Phys Earth Planet Inter 134:203–211CrossRefGoogle Scholar
  32. López Cachero FJ (2007) Sociedad y economía durante el Bronce final y la primera edad de Hierro en el noreste peninsular: una aproximación a partir de las evidencias arqueológicas. Trab Prehist 64:99–120CrossRefGoogle Scholar
  33. López Cachero FJ (2008) Necrópolis de incineración y arquitectura funeraria en el noreste de la Península Ibérica durante el Bronce Final y la Primera Edad del Hierro. Complutum 19(1):139–171Google Scholar
  34. López Cachero FJ, Pons E (2008) La periodització del Bronze Final al Ferro Inicial a Catalunya. Cypsela 17:51–64Google Scholar
  35. Lowrie W (1990) Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys Res Lett 17:159–162CrossRefGoogle Scholar
  36. Manning SW, Weninger B (1992) A light in the dark: archaeological wiggle matching and the absolute chronology of the close of the Aegean Late Bronze Age. Antiquity 66(252):636–663CrossRefGoogle Scholar
  37. McFadden P, McElhinny M (1990) Classification of the reversal test in paleomagnetism. Geophys J Int 103:725–729CrossRefGoogle Scholar
  38. Néel L (1955) Some theoretical aspects of rock magnetism. Adv Phys 4:191–243CrossRefGoogle Scholar
  39. Núñez FJ (2015) Reflexiones sobre la cronología de los inicios de la Edad del Hierro en el Mediterráneo occidental y sus problemas. CuPAUAM 41:23–37CrossRefGoogle Scholar
  40. Palencia-Ortas A, Osete ML, Campuzano SA, McIntosh G, Larrazabal J, Sastre J, Rodriguez-Aranda J (2017) New archaeomagnetic directions from Portugal and evolution of the geomagnetic field in Iberia from Late Bronze Age to Roman times. Phys Earth Planet Inter 270:183–194CrossRefGoogle Scholar
  41. Pare C (2008) Archaeological periods and their purpose. In Construire le temps: histoire et méthodes des chronologies et calendriers des derniers millénaires avant notre ère en Europe occidentale, Actes du XXXe colloque international de Halma-Ipel (CNRS, Lille 3, MCC, 7–9 Décembre 2006) pp 69–84Google Scholar
  42. Pavón-Carrasco FJ, Osete ML, Torta JM, Gaya-Piqué LR (2009) A regional archaeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: appli- cations to archaeomagnetic dating. Geochem Geophys Geosyst 10:Q03013.  https://doi.org/10.1029/2008GC002244 CrossRefGoogle Scholar
  43. Pavón-Carrasco FJ, Rodríguez-González J, Osete ML, Torta JM (2011) A Matlab tool for archaeomagnetic dating. J Archaeol Sci 38:408–419CrossRefGoogle Scholar
  44. Pavón-Carrasco FJ, Osete ML, Torta JM, De Santis A (2014) A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet Sci Lett 388:98–109CrossRefGoogle Scholar
  45. Pons E, Graells R, Valldepèrez M (2010) La formación de las sociedades protourbanas en el NE de la Península Ibérica a partir de contextos funerarios (1100-550 ANE cal.). In Proceeding of the XV Congress of the International Union for Prehistoric and Protohistoric Sciences (Lisbon, 4-9 September 2006), BAR International Series, 2124: 47-60Google Scholar
  46. Ramon J (1995) Las ánforas fenicio-púnicas del Mediterráneo Central y Occidental, Collección Instrumenta, 2. Publicacions de la Universitat de Barcelona pp 661Google Scholar
  47. Sanmartí J (2002) Les territoires politiques et la formation des états ibériques sur la côte de Catalogne (IVè-IIIe s. av. J.-C.). In: Garcia D, Verdin F (eds) Territoires Celtiques. Espaces ethniques e territoiresndes aglomérations protohistoriques d’Europe Occidentale, Paris, pp 30–36Google Scholar
  48. Sanmartí J (2004) From local groups to early states: the development of complexity in protohistoric Catalonia. Pyrenae 35(1):7–42Google Scholar
  49. Sanmartí J (2010) Demografía y cambio socio-cultural. El caso de la Iberia septentrional. Coloquio Internacional de Arqueología Espacial, Arqueología Espacial 6Google Scholar
  50. Saorin C, Garcia i Rubert D (2016) Estudi d’un forn culinari de la primera Edat del Ferro localitzat a l’assentament de Sant Jaume (Alcanar, Montsià) mitjançant espectroscòpia per FTIR, micromorfologia i anàlisi tipológica. Quad Preh Arq Cast 34:43–77Google Scholar
  51. Sarda S, Garcia i Rubert D, Moreno I (2016) Feasting, Phoenician trade and dynamics of social change in northeastern Iberia: rituals of commensality in the Early Iron Age settlement of Sant Jaume (Alcanar, Catalonia). J Mediterr Archaeol 29(1)Google Scholar
  52. Stacey FD (1967) The Koenigsberger ratio and the nature of thermoremanence in igneous rocks. Earth Planet Sci Lett 2:67–68CrossRefGoogle Scholar
  53. Tauxe L (1998) Paleomagnetic principles and practice. Kluwer Academic, DordrechtGoogle Scholar
  54. Thellier E (1938) Sur láimantation des terres cuites et ses applications géophysiques. Ann l’Inst Physique du Globe 16:157–302Google Scholar
  55. Torres Ortiz M (1998) La cronología absoluta europea y el inicio de la colonización fenicia en Occidente. Implicaciones cronológicas en Chipre y el Próximo Oriente Complutum 9:49–49Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Geosciences IGEO (CSIC-UCM)MadridSpain
  2. 2.Univ Rennes, CNRSGéosciences-Rennes-UMR 6118RennesFrance
  3. 3.Secció de Prehistòria i ArqueologiaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Facultad de CC. FísicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations