Advertisement

First insights into Chinese reverse glass paintings gained by non-invasive spectroscopic analysis—tracing a cultural dialogue

  • Simon StegerEmail author
  • Diana Oesterle
  • Rupprecht MayerEmail author
  • Oliver Hahn
  • Simone Bretz
  • Gisela Geiger
Original Paper
  • 11 Downloads

Abstract

This work presents a technical investigation of two Chinese reverse glass paintings from the late 19th and early 20th centuries. A multi-analytical, non-invasive approach (X-ray fluorescence (XRF), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy) was used to identify the pigments and classify the binding media. The results reveal a combined use of traditional Chinese and imported European materials. Several pigments like cinnabar, lead white, orpiment, carbon black and copper-arsenic green (probably emerald green) were found in both paintings; red lead, artificial ultramarine blue, Prussian blue and ochre appear in at least one of the paintings. The proof of limewash (calcite and small amounts of portlandite) as a backing layer in Yingying and Hongniang indicates that clamshell white was also used for reverse glass paintings. Drying oil was classified as a binding media in most areas of both paintings. However, the orange background of The Archer yielded prominent bands of both proteinaceous and fatty binder.

Keywords

Reverse glass painting Non-invasive analysis Pigment identification XRF Raman spectroscopy DRIFTS Limewash Emerald green 

Notes

Acknowledgements

We would like to thank Sebastian Simon and Birgit Meng for providing us reference material and background information on limewash and portlandite. We are grateful to Heike Stege for helpful comments on the manuscript.

Funding information

The project “Hinterglasmalerei als Technik der Klassischen Moderne 1905–1955” is funded by the Volkswagen-Stiftung, Hannover “Forschung in Museen” reference 89921.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Aze S, Vallet JM, Detalle V, Grauby O, Baronnet A (2008) Chromatic alterations of red lead pigments in artwork: a review. Phase Transit 81:145–154CrossRefGoogle Scholar
  2. Bailey K (2012) A note on Prussian blue in nineteenth-century Canton. Stud Conserv 57(2):116–121CrossRefGoogle Scholar
  3. Barsan MM, Butler IS, Fitzpatrick J, Gilson DFR (2011) High pressure studies of the micro-Raman spectra of iron cyanide complexes: prussian blue (Fe4[Fe(CN)6]3), potassium ferricyanide (K3[Fe(CN)6]), and sodium nitroprusside (Na2[Fe(CN)5(NO)]·2H2O). J Raman Spectrosc 42:1820–1824CrossRefGoogle Scholar
  4. Baumer U, Dietemann P (2010) Identification and differentiation of dragon’s blood in works of art using gas chromatography/mass spectrometry. Anal Bioanal Chem 397:1363–1376CrossRefGoogle Scholar
  5. Baumer U, Dietemann P, Koller J (2009) Identification of resinous materials on 16th and 17th century reverse-glass objects by gas chromatography/mass spectrometry. Int J Mass Spectrom 284:131–141CrossRefGoogle Scholar
  6. Baumer U, Fiedler I, Bretz S, Ranz HJ, Dietemann P (2012) Decorative reverse-painted glass objects from the fourteenth to twentieth centuries: an overview of the binding media. Stud Conserv 57(sup1):9–18.  https://doi.org/10.1179/2047058412Y.0000000034 CrossRefGoogle Scholar
  7. Bell IM, Clark RJH, Gibbs PJ (1997) Raman spectroscopic library of natural and synthetic pigments (Pre- ≈1850 AD). Spectrochim Acta A 53:2159–2179CrossRefGoogle Scholar
  8. Berger K (1980) Der Japonismus in der westlichen Malerei 1860–1920 (in German). Prestel, MunichGoogle Scholar
  9. Bersani D, Aliatis I, Tribaudino M, Mantovani L, Benisek A, Carpenter MA, Gatta GD, Lottici PP (2018) Plagioclase composition by Raman spectroscopy. J Raman Spectros 49:684–698CrossRefGoogle Scholar
  10. Bretz S, Baumer U, Stege H, von Miller J, von Kerssenbrock-Krosig D (2009) A German house altar from the sixteenth century: conservation and research of reverse paintings on glass. Stud Conserv 53(4):209–224CrossRefGoogle Scholar
  11. Buti D, Rosi F, Brunetti BG, Miliani C (2013) In-situ identification of copper-based green pigments on paintings and manuscripts by reflection FTIR. Anal Bioanal Chem 405:2699–2711CrossRefGoogle Scholar
  12. Caggiani MC, Cosentino A, Mangone A (2016) Pigments Checker version 3.0, a handy set for conservation scientists: a free online Raman spectra database. Microchem J 129:123–132CrossRefGoogle Scholar
  13. Cheung C, Jing Z, Tang J, Yue Z, Richards M (2017) Examining social and cultural differentiation in early Bronze Age China using stable isotope analysis and mortuary patterning of human remains at Xin’anzhuang, Yinxu. Archaeol Anthropol Sci 9(5):799–816CrossRefGoogle Scholar
  14. Coccato A, Jehlicka J, Vandenabeele P (2015) Raman spectroscopy for the investigation of carbon-based black pigments. J Raman Spectrosc 46:1003–1015CrossRefGoogle Scholar
  15. Colomban P, Zhang Y, Zhao B (2017) Non-invasive Raman analyses of Chinese huafalang and related porcelain wares. Searching for evidence for innovative pigment technologies. Ceram Int 43:12079–12088CrossRefGoogle Scholar
  16. Curtis EB (2009) Glass exchange between Europe and China, 1550-1800: Diplomatic, Mercantile and Technological Interactions. Ashgate, FarnhamGoogle Scholar
  17. De Luca E, Poldi G, Redaelli M, Zaffino C, Bruni S (2016) Multi-technique investigation of historical Chinese dyestuffs used in Ningxia carpets. Archaeol Anthropol Sci 9(8):1789–1798CrossRefGoogle Scholar
  18. Eremin K, Stenger J, Huang JF, Aspuru-Guzik A, Betley T, Vogt L, Kassal I, Speakman S, Khandekar N (2008) Examination of pigments on Thai manuscripts: the first identification of copper citrate. J Raman Spectrosc 39:1057–1065CrossRefGoogle Scholar
  19. Feng SL, Feng XQ, Zhu JH, Xie GX, Yan LT, Li L, Li G, Shen QH (2008) Nondestructive analysis on ancient porcelain of Longquan Kiln in Zhejiang Province by WDXRF. Chinese. Phys C 32:284–288Google Scholar
  20. Fernández-Carrasco L, Torrens-Martín D, Morales LM, Martínez-Ramírez S (2012) Infrared spectroscopy in the analysis of building and construction materials. In: Theophanides T (ed) Infrared Spectroscopy, Materials Science, Engineering and Technology, Intech, pp 369–382.  https://doi.org/10.5772/36186
  21. FitzHugh EW, Winter J, Leona M (2003) Studies using scientific methods: pigments in later Japanese paintings. Freer Gallery of Art Occasional Papers, WashingtonGoogle Scholar
  22. Frost RL, Martens WN, Kloprogge T (2002) Raman spectroscopic study of cinnabar (HgS), realgar (As4S4), and orpiment (As2S3) at 298 and 77K. Neues JB Miner Monat 2002(10):469–480CrossRefGoogle Scholar
  23. Giaccai J, Winter J (2005) Chinese painting colors: history and reality. In: Jett P, Winter J, McCarthy B (eds) Scientific Research on the Pictorial Arts of Asia. Archetype Publications, London, pp 99–108Google Scholar
  24. Goltz D, McClelland J, Schellenberg A, Attas M, Cloutis E, Collins C (2003) Spectroscopic studies on the darkening of lead white. Appl Spectrosc 57:1393–1398CrossRefGoogle Scholar
  25. Grundmann G, Ivleva N, Richter M, Stege H, Haisch C (2011) The rediscovery of sublimed arsenic sulphide pigments in painting and polychromy: applications of Raman microspectroscopy. In: Spring M (ed) Studying Old Master paintings: technology and practice the National Gallery technical bulletin 30th anniversary conference postprints. Archetype Publications, London, pp 269–276Google Scholar
  26. Hahn O, Bretz S, Hagnau C, Ranz HJ, Wolff T (2009) Pigments, dyes, and black enamel — the colorants of reverse paintings on glass. Archaeol Anthropol Sci 1:263–271CrossRefGoogle Scholar
  27. Harley RD (2001) Artists’ pigments c.1600-1835, 2nd edn. Archetype Publications, LondonGoogle Scholar
  28. Hu Y (2018) Thirty-four years of stable isotopic analyses of ancient skeletons in China: An overview, progress and prospects. Archaeometry 60:144–156CrossRefGoogle Scholar
  29. Invernizzi C, Daveri A, Vagnini M, Malagodi M (2017) Non-invasive identification of organic materials in historical stringed musical instruments by reflection infrared spectroscopy: a methodological approach. Anal Bioanal Chem 409:3281–3288CrossRefGoogle Scholar
  30. Kirmizi B, Colomban P, Quette B (2010) On-site analysis of Chinese Cloisonné enamels from 15th to 19th century. J Raman Spectrosc 41(7):780–790Google Scholar
  31. Lambourne L (2005) Japonisme. Cultural Crossings between Japan and the West. Phaidon Press, LondonGoogle Scholar
  32. Lange B (2007) Konzepte von Bild und Raum: Malerei, Bildhauerkunst, Graphik und Performances (in German). In: Lange B (ed) Vom Expressionismus bis heute. Geschichte der bildenden Kunst in Deutschland (in German), Prestel, Munich, pp 203–250Google Scholar
  33. Lankheit K, Kandinsky W, Marc F (1983) Briefwechsel: mit Briefen von und an Gabriele Münter und Maria Marc (in German). Piper, MunichGoogle Scholar
  34. Li Z, Wang L, Ma Q, Mei J (2014) A scientific study of the pigments in the wall paintings at Jokhang Monastery in Lhasa, Tibet, China. Herit Sci 2(1):21CrossRefGoogle Scholar
  35. Li T, Ji J, Zhou Z, Shi J (2017) A multi-analytical approach to investigate date-unknown paintings of Chinese Taoist priests. Archaeol Anthropol Sci 9:395–404CrossRefGoogle Scholar
  36. Liu L (2016) Vitreous Views: Materiality and Mediality of Glass in Qing China through a Transcultural Prism. Getty Res J 8:17–38CrossRefGoogle Scholar
  37. Martin P (1996) Hinterglasbilder. Europa - Asien – Afrika (in German). Staatliches Museum für Völkerkunde, Dresden, p 9Google Scholar
  38. Mayer R (2018) Bolihua: Chinese Reverse Glass Painting from the Mei Lin Collection. Hirmer Verlag, MunichGoogle Scholar
  39. Mernagh TP (1991) Use of the Laser Raman Microprobe for Discrimination Amongst Feldspar Minerals. J Raman Spectros 22:458–457CrossRefGoogle Scholar
  40. Miliani C, Daveri A, Brunetti BG, Sgamellotti A (2008) CO2 entrapment in natural ultramarine blue. Chem Phys Lett 466:148–151CrossRefGoogle Scholar
  41. Miliani C, Rosi F, Daveri A, Brunetti BG (2012) Reflection infrared spectroscopy for the non-invasive in-situ study of artists' pigments. Appl Phys A-Mater 106:295–307CrossRefGoogle Scholar
  42. Monico L, Rosi F, Miliani C, Daveri A, Brunetti BG (2013) Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochim Acta A 116:270–280Google Scholar
  43. Oh MS (2006) Der Blaue Reiter und der Japonismus (in German). PhD thesis, MunichGoogle Scholar
  44. Patterson JL (2016) Chinese Glass Paintings in Bangkok Monasteries. Arch Asian Art 66(2):153–185CrossRefGoogle Scholar
  45. Plesters J (1966) Ultramarine blue, natural and artificial. In: Roy A (ed) Artists’ pigments: A handbook of their history and characteristics, vol 2. Oxford University Press, New York, pp 37–65Google Scholar
  46. Qu YA, Xie J, Xi XQ, Huang CJ, Yang JL (2014) Microstructure characteristics of blue-and-white porcelain from the folk kiln of Ming and Qing Dynasties. Ceram Int 40(6):8783–8790CrossRefGoogle Scholar
  47. Rötter C, Grundmann G, Richter M, van Loon A, Keune K, Boersma A, Rapp K (2007) Auripigment/orpiment—Studien zu dem Mineral und den künstlichen Produkten. Verlag Anton Siegl, MunichGoogle Scholar
  48. Salmen B (2008) Chinesische Bilder. Volkskunst für den “Blauen Reiter” (in German). Schloßmuseum Murnau, MurnauGoogle Scholar
  49. Salmen B (2011) “... diese zärtlichen, geistvollen Phantasien...” Die Maler des “Blauen Reiter” und Japan (in German). Schloßmuseum Murnau, MurnauGoogle Scholar
  50. Samain L, Grandjean F, Long GJ, Martinetto P, Bordet P, Strivay D (2013) Relationship between the Synthesis of Prussian Blue Pigments, Their Color, Physical Properties, and Their Behavior in Paint Layers. J Phys Chem C 117:9693–9712CrossRefGoogle Scholar
  51. Steger S, Stege H, Bretz S, Hahn O (2018) Capabilities and limitations of handheld diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass. Spectrochim Acta A 195:103–112CrossRefGoogle Scholar
  52. Su Y, Qu L, Duan H, Tarcea N, Shen A, Popp J, Hu J (2015) Elemental analysis-aided Raman spectroscopic studies on Chinese cloisonné wares and Painted enamels from the Imperial Palace. Spectrochim Acta A 153:165–170CrossRefGoogle Scholar
  53. Sultan S, Kareem K, He L, Simon S (2017) Identification of the authenticity of pigments in ancient polychromed artworks of China. Anal Methods 9:814–825Google Scholar
  54. Tamburini D, Cartwright CR, Pullan M, Vickers H (2018) An investigation of the dye palette in Chinese silk embroidery from Dunhuang (Tang dynasty). Archaeol Anthropol Sci.  https://doi.org/10.1007/s12520-017-0592-4
  55. Tite MS, Freestone IC, Wood N (2012) An investigation into the relationship between the raw materials used in the production of Chinese porcelain and stoneware bodies and the resulting microstructures. Archaeometry 54:37–55CrossRefGoogle Scholar
  56. Trentelman K, Stodulski L, Pavlovski M (1996) Characterization of Pararealgar and Other Light-Induced Transformation Products from Realgar by Raman Microspectroscopy. Anal Chem 68:1755–1761CrossRefGoogle Scholar
  57. Van Drongen PLF (2006) Sensitive plates: nineteen Chinese Paintings on Glass from the End of the Eighteenth Century. Museum Volkenkunde, Leiden, pp 1–61Google Scholar
  58. Wang J (2009) A search for the provenance of natural ultramarine blue as a blue pigment in ancient Chinese art. Wenbo 2009(6):396–402 (in Chinese)Google Scholar
  59. Wappenschmidt F (2008) Bunt leuchtende Bilder der chinesischen Volkskunst – Malereien auf Seide, Papier, Markpapier und hinter Glas (in German). In: Salmen B (ed) Chinesische Bilder. Volkskunst für den “Blauen Reiter” (in German). Schloßmuseum Murnau, MurnauGoogle Scholar
  60. Winter J (1984) Natural adhesives in East Asian paintings. Stud Conserv 29(sup1):117–120.  https://doi.org/10.1179/sic.1984.29.Supplement-1.117 CrossRefGoogle Scholar
  61. Wise D, Wise A (1998) Observations on nineteenth-century Chinese pigments with special reference to copper greens. In: Eagan J (ed) IPC Conference Papers, 6–9 April 1997. Institute of Paper Conservation, London, pp 125–136Google Scholar
  62. Yang B, Li G, Qu L, Zhao C, Ma H, Ma Q, Chen K (2017) Qinggong Caihui Bolihua Chubu Kexue Fenxi Yanjiu (清宫彩绘玻璃画初步科学分析研究). Zhongguo Wenwu Kexue Yanjiu (中国文物科学研究) 2017(3):72–79 (in Chinese)Google Scholar
  63. Yu F (1988) Chinese painting colours: studies of their preparation and application in traditional and modern times (trans., J. Silbergeld and A. McNair). University of Washington Press, WashingtonGoogle Scholar
  64. Zeng QG, Zhang GX, Leung CW, Zuo J (2010) Studies of wall painting fragments from Kaiping Diaolou by SEM/EDX, micro Raman and FT-IR spectroscopy. Microchem J 96:330–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Federal Institute for Materials Research and Testing (BAM), Division 4.5BerlinGermany
  2. 2.Museum Penzberg - Sammlung Campendonk, Am Museum 1PenzbergGermany
  3. 3.LMU Munich, Institute of Art HistoryMunichGermany
  4. 4.SinologistBurghausenGermany
  5. 5.Centre for the Study of Manuscript CulturesUniversity of HamburgHamburgGermany
  6. 6.Conservator for Reverse Paintings on GlassGarmisch-PartenkirchenGermany

Personalised recommendations