First in situ pXRF analyses of rock paintings in Erongo, Namibia: results, current limits, and prospects

  • Guilhem MauranEmail author
  • Matthieu Lebon
  • Florent Détroit
  • Benoît Caron
  • Alma Nankela
  • David Pleurdeau
  • Jean-Jacques Bahain
Original Paper


Namibia is one of the southern African countries hosting the richest rock art heritage, with thousands of rock paintings. Although numerous studies investigated their distribution, style, and possible meaning, few are known about the materials used to perform these paintings. Our in situ study aimed at identifying the diversity of pigments and alterations of some rock paintings in the northwestern part of the Erongo (Namibia). It relies on extensive pXRF analyses of 35 figures from eight rock art sites of the area. Despite common limits of in situ pXRF analyses, the extensive number of figures analyzed and the original data treatment that we performed pioneered the first scientific analyses of the pigments from rock painting sites in the Erongo Mountains. Furthermore, the study also confirmed the presence of iron oxide pigments on a portion of wall exposed during the excavations carried out at the archeological site of Leopard Cave and of possibly datable alterations over several paintings, paving the way to future chronological analyses of past tradition of rock paintings in Central Namibia.


pXRF In situ Rock art Pigments Namibia Erongo 



The authors are very grateful to Ms. and Mr. Rüst and their family for their kind permission to access and analyze the rock art sites located on their farm. The authors also thank the manager of the Ai-Aiba lodge for allowing the in situ analyses of Rain Cloud paintings.

The authors wish to express their sincere gratitude to the National Heritage Council of Namibia for allowing these analyses according to the permit 11/2015 renewed and extended with the renewal permit 04/2017 given to D.P.

The authors also thank the National Museum of Namibia and the French embassy in Namibia for their support to conduct the present study.

The French Ministry of Foreign Affairs supported this work through the funding of the MANAM project.

The authors also thank the LaBex BCDiv (Biological and Cultural Diversity) for the subsidy granted to the project “Dynamique des peuples en Namibie à l’Holocène—NAMIBIE (Windhoek, Erongo)” at the origin of the present investigation.

The authors also thank Sorbonnes Universités for financial support through the Chaire Polyre funding the PhD project of G.M., and the APaNam project funded by Observatoire des Patrimoines de Sorbonne Universités (OPUS).


  1. Acevedo A, Franco N (2012) Aplicación de DStretch-ImageJ a imágenes digiteles del arte rupestre de Patagonia (Argentina). Comechingonia Virtual 6(2):152–175Google Scholar
  2. Appoloni CR, Lopes F, Melquiades FL, Parellada CI (2009) In situ pigments study of rock art at Jaguariaíava 1 archeological site (Paraná, Brazil) by portable energy dispersive X-ray fluorescence (EDXRF). FUMDHAMentos 9:555–562Google Scholar
  3. Aubert M, O’Connor S, McCulloch M, Mortimer G, Watchman A, Richer-LaFlèche M (2007) Uranium-series dating rock art in East Timor. J Archeol Sci 34:991–996CrossRefGoogle Scholar
  4. Beck L, Rousselièere H, Castaing J, Duran A, Lebon M, Lahlil S, Plassard F (2012) Analyze in situ des dessins préhistoriques de la grotte de Rouffignac par fluorescence X et diffraction X portable. ArcheoSciences 36:139–151CrossRefGoogle Scholar
  5. Beck L, Rousselière H, Castaing J, Duran A, Lebon M, Moignard B, Plassard F (2014) First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art. Talanta 129:459–464CrossRefGoogle Scholar
  6. Bedford C, Robinson DW, Sturt F, Bernard J (2014) Making paintings in South Central California: a qualitative methodology for differentiating between in situ red rock art pigments using portable XRF. SCA Proceedings 28:286–296Google Scholar
  7. Bedford C, Robinson DW, Gandy D (2018) Emidiano Blues: the California indigenous pigment palette and in situ analysis of an exotic color. Open Archeology 4:152–172CrossRefGoogle Scholar
  8. Bleek WH, Lloyd LC (1911) Specimens of Bushman folklore. George Allen & Co, LondonGoogle Scholar
  9. Blümel W, Emmermann R, Hüser K (1979) Geowissenschaftliche Beschreibung und Deutung eines südwestafrikanischen Vulkankomplexes. S.W.A Wissenscheftlichen Gesellschaft, Windhoek.Google Scholar
  10. Bonneau A (2016) Geochemical characterization and direct dating of rock art using radiocarbon and optically stimulated luminescence: the case study of southern Africa and the Canadian shield. PhD dissertation, Université du Québec, Montréal.Google Scholar
  11. Bonneau A, Pearce DG, Pollard AM (2012) A multi-technique characterization and provenance study of the pigments used in San rock art, South Africa. J Archeol Sci 2(39): 287–294.Google Scholar
  12. Bonneau A, Pearce D, Mitchell P, Staff R, Arthur C, Mallen L, Brock F, Higham T (2017) The earliest directly dated rock paintings from southern Africa: new AMS radiocarbon dates. Antiquity 4(91):322–333CrossRefGoogle Scholar
  13. Breuil H (1955) The white lady of the Brandberg. Trianon Press, ParisGoogle Scholar
  14. Breuil H, Boyle ME, Scherz ER, Strey RG (1960) Anibib & Omandumba, and other Erongo sites. Calouste Gulbenkian Foundation, Clairveaux.Google Scholar
  15. Breuil H (1975) The Sphinx and White Ghost shelters and other Spitzkopje sites. Trianon Press, ParisGoogle Scholar
  16. Bu K, Cizdziel JV, Russ J (2013) The source of iron-oxide pigments used in Pecos river style rock paints. Archaeometry 55: 1088–1100.Google Scholar
  17. Chadefaux C, Vignaud C, Menu M, Reiche I (2008) Multianalytical study of Paleolithic reindeer antler. Discovery of antler traces in Lascaux pigments by TEM. Archaeometry 50(3): 516–534.Google Scholar
  18. Chalmin E, Farges F, Vignaud C, Susini J, Menu M, Brown GE Jr (2006) Discovery of unusual mineral in Paleolithic black pigments from Lascaux (France) and Ekain (Spain). AIP Conference Proceedings, 882, 220–2. Contributed to 13th International Conference on X-ray Absorption Fine Structure (XAFS13), 9–14 July. Stanford, CA, p 2006Google Scholar
  19. Chalmin E, Castets G, Delanoy J-J, David B, Barker B, Lamb L, Soufi F, Pairis S, Cersoy S, Martinetto P, Geneste J-M, Hoerlé S, Richards T, Gunn R (2016) Geochemical analysis of the painted panels at the ‘Genyornis’ rock art site, Arnhem Land, Australia. Quat Int 430:60–80CrossRefGoogle Scholar
  20. Chalmin E, Hoerlé S, Reiche I (2017) Taphonomy on the surface of the rock wall: rock–paint–atmosphere interactions. In: David B, McNiven IJ (eds) The Oxford Handbook of the Archeology and Anthropology of Rock Art. Oxford Handbook, Accessed 22 June 2018
  21. Chalmin E, Huntley J (2017) Characterizing rock art pigments. In: David B, McNiven IJ (eds) The Oxford Handbook of the Archeology and Anthropology of Rock Art. Oxford University Press, from Accessed 22 June 2018
  22. Charalambous A, Kassianidou V, Papasavvas G (2014) A compositional study of Cypriot bronzes dating to the Early Iron Age using portable X-ray fluorescence spectrometry (pXRF). J Archeol Sci 46:205–216CrossRefGoogle Scholar
  23. Clot A, Menu M, Walter P (1995) Manières de peindre des mains à Gargas et Tibiran, Hautes-Pyrénées. L’Anthropologie 99(2–3): 221–235.Google Scholar
  24. Clottes J, Menu M, Walter P (1990) La préparation des peintures magdaléniennes des cavernes ariégeoises. Bulletin de la Société préhistorique française 87(6):170–192CrossRefGoogle Scholar
  25. Conard NJ, Breunig P, Gonska H, Marinetti G (1988) The feasibility of dating rock paintings from Brandberg, Namibia, with 14C. J Archeol Sci 15:463–466CrossRefGoogle Scholar
  26. Dowson TA (1994) Reading art, writing history: rock art and social change in Southern Africa. World Archeology 25(3):332–345CrossRefGoogle Scholar
  27. Ferretti M, Plese C, Garcia CR (2013) X-Ray fluorescence investigation of gilded and enameled silver: the case study of four medieval processional crosses from central Italy. Spectrochim Acta B 83–84:21–27CrossRefGoogle Scholar
  28. Fontana D, Alberghina MF, Barraco R, Basile S, Tranchina L, Brai M, Gueli A, Troja SO (2014) Historical pigments characterization by quantitative X-ray fluorescence. J Cult Herit 15:226–274CrossRefGoogle Scholar
  29. Frahm E, Doonan CP (2013) The technological versus methodological revolution of portable XRF in archeology. J Archeol Sci 40:1425–1434CrossRefGoogle Scholar
  30. Freundlich J, Schwabedissen H, Wendt W (1980) Köln Radiocarbon measurements II. Radiocarbon 22(1):68–81CrossRefGoogle Scholar
  31. García-Diez M, Hoffmann DL, Zilhão J, de las Heras C, Lasheras JA, Montes R, Pike AWG (2013) Uranium series dating reveals a long sequence of rock art at Altamira Cave (Santillana del Mar, Cantabria). J Archeol Sci 40:4098–4106CrossRefGoogle Scholar
  32. Gay M, Alfred M, Menu M, Laval E, Arias P, Ontañon R, Reiche I (2015) Paleolithic paint palettes used at La Garma Cave (Cantabria, Spain) investigated by means of combined in situ and synchrotron X-ray analytical methods. J Anal At Spectrom 30:767–776CrossRefGoogle Scholar
  33. Gay M, Müller K, Plassard F, Cleyet-Merle J-J, Arias P, Ontañon R, Reiche I (2016) Efficient quantification procedures for data evaluation of portable X-ray fluorescence—potential improvements for Paleolithic cave art knowledge. J Archeol Sci 12(10):878–886Google Scholar
  34. Goren Y, Mommsen H, Klinger J (2011) Non-destructive provenance study of cuneiform tablets using portable X-ray fluorescence (pXRF). J Archeol Sci 38:684–696CrossRefGoogle Scholar
  35. Green H, Gleadow A, Finch D (2017a) Characterization of mineral deposition systems associated with rock art in the Kimberley region of northwest Australia. Data in Brief 14:813–835CrossRefGoogle Scholar
  36. Green H, Gleadow A, Finch D, Hergt J, Ouzman S (2017b) Mineral deposition systems at rock art sites, Kimberley, Northern Australia—field observations. J Archeol Sci 14:340–352Google Scholar
  37. Harman J (2008): Digital enhancement of pictographs from Baja California. Trabajo presentado al Simposium Internacional de Arte Rupestre, Instituto Cubano de Antropología, Convento San Francisco de Asís, La Habana 2008.Google Scholar
  38. Hincke M, Nys Y, Gautron J, Mann K, Rodriguez-Navarro AB, McKee MD (2012) The eggshell: structure, composition and mineralization. Front Biosci 1(17):1266–1280CrossRefGoogle Scholar
  39. Hoffman DL, Pike AWG, García-Diez M, Pettitt PB, Zilhão J (2016) Methods for U-series of CaCO3 crusts associated with Paleolithic cave art and application to Iberian sites. Quat Geochronol 36:104–119CrossRefGoogle Scholar
  40. Hoffmann DL, Utrilla P, Bea M, Pike AWG, García-Diez M, Zilhão J, Domingo R (2017) U-series dating of Paleolithic rock art at Fuente del Truncho (Aragón, Spain). Quat Int 432: 50–58.Google Scholar
  41. Hoffmann DL, Standish CD, García-Diez M, Pettit PB, Milton JA, Zilhão J, Alcolea-González JJ, Cantalejo-Duarte P, Collado H, de Balbín R, Lorblanchet M, Ramos-Muñoz J, Weniger GCh, Pike AWG (2018) U–Th dating of carbonate crust reveals Neanderthal origin of Iberian cave art. Science 359(6378): 912–915.Google Scholar
  42. Huntley J (2012) Taphonomy or paint recipe: in situ portable x-ray fluorescence analysis of two anthropomorphic motifs from the Woronora Plateau, New South Wales. Aust Archeology 75:78–94CrossRefGoogle Scholar
  43. Huntley J (2015) Looking up and looking down: pigment chemistry as a chronological marker in the Sydney Basin Rock Art Assemblage, Australia. Rock Art Res 32:131–145Google Scholar
  44. Huntley J, Galamban CF (2016) The material scientific investigation of rock art: contributions from non-invasive X-ray techniques. In: Bednarik RG, Fiore D, Basile M, Kumar G, Huisheng T (ed) Palaeoart and materiality: the scientific study of rock art, 1st edn. Archaeopress, Oxford, pp. 41–58.Google Scholar
  45. Huntley J, Aubert M, Ross J, Brand HEA, Morwood MJ (2013) One color, (at least) two minerals: a study of Mulberry rock art pigment and a Mulberry pigment ‘quarry’ from the Kimberley, Northern Australia. Archaeometry 57:77–99CrossRefGoogle Scholar
  46. Huntley J, Westaway K, Gore D, Aubert M, Ross J, Morwood MJ (2016) Non-destructive or noninvasive? The potential effect of X-ray fluorescence spectrometers on luminescence age estimates of archeological samples. Geoarchaeology 31: 592–602.Google Scholar
  47. Huntley J, George S, Sutton MJ, Taçon P (2018) Second-hand? Insights into the age and “authenticity” of colonial period rock art on the Sunshine Coast, Queensland, Australia. J Archeol Sci 17:163–172Google Scholar
  48. Jacobson L, Pineda CA, Morris D, Peisach M, Pillay AE (1994) A preliminary report on the PIXE analysis of ostrich eggshell and its potential for provenience studies in southern Africa. In: Demirci S, Özer AM, Summers GD (ed) Archaeometry 94: proceedings of the 29th International Symposium on Archaeometry. Tubitak, Ankara, pp. 273–278.Google Scholar
  49. Koenig CW, Castañeda AM, Boyd CE, Rowe MW, Steelman KL (2014) Portable X-ray fluorescence spectroscopy of pictographs: a case study from the lower Pecos canyonlands, Texas. Archaeometry 56:168–186CrossRefGoogle Scholar
  50. Lenssen-Erz T (1996) Perceptions du cadre écologique et ses expressions métaphoriques dans l’art rupestre du Brandberg (Namibie). L’Anthropologie 100(2/3):457–472Google Scholar
  51. Lenssen-Erz T (1997) Metaphors of intactness of environment in Namibian rock paintings. In: Faulstich P (ed) Rock art as visual ecology. American Rock Art Research Association, Tucson AZ, pp. 43–54.Google Scholar
  52. Lewis-Williams JD (1972) The syntax and function of the Giant’s Castle rock paintings. South Afr Archeol Bull 27:49–65CrossRefGoogle Scholar
  53. Lewis-Williams JD (1974) Re-thinking the South African rock art. Origini 8:229–257Google Scholar
  54. Lewis-Williams JD (1975) The Dakensberg rock paintings as an expression of religious thought. In: Anati E, Les religions de la préhistoire. Centro Camuno di Studi Preistorici, Capo di Ponte.Google Scholar
  55. Lewis-Williams JD (1980) Ethnography and iconography: aspects of southern San thought and art. Man 15:467–482CrossRefGoogle Scholar
  56. Lewis-Williams JD (1981) Believing and seeing: symbolic meanings in southern San rock art. Academic Press, LondonGoogle Scholar
  57. Loendorf CR, Loendorf LL (2013) Analyzing red pictographs with portable X-ray fluorescence. Am Indian Rock Art 39:143–150Google Scholar
  58. López-Montalvo E, Villaverde V, Roldán C, Murcia S, Badal E (2014) An approximation to the study of black pigments in Cova Remigia (Castellón, Spain). Technical and cultural assessments of the use of carbon-based black pigments in Spanish Levantine Rock Art. J Archeol Sci 12(52):535–545CrossRefGoogle Scholar
  59. Maddhusudan Mehta J, McCall G, Marks T, Enloe J (2017) Geochemical source evaluation of archeological chert from the Carson mounds site in northwestern Mississippi using portable X-ray fluorescence (pXRF). J Archeol Sci 11:381–389Google Scholar
  60. Mazel AD, Watchman AL (2003) Dating rock paintings in the Ukhahlamba-Drakensberg and the Biggarsberg, KwaZulu-Natal (South Africa). South Afr Humanit 15:59–73Google Scholar
  61. McDonald J, Steelman KL, Veth P, Mackey J, Loewen J, Thurber CR, Guilderson TP (2014) Results from the first intensive dating program for pigment art in the Australian arid zone: insights into recent social complexity. J Archeol Sci 46:195–204CrossRefGoogle Scholar
  62. Menu M, Walter P (1996) Les rythmes de l’art préhistorique. Techné 3:11–23Google Scholar
  63. Nankela AM (2015) Rock art research in Namibia: a synopsis. Afr Stud 24(1):39–55Google Scholar
  64. Nankela AM (2017) Rock art and landscape: an empirical analysis in the content, context and distribution of the rock art sites in Omandumba East and West, Erongo Region Namibia. PhD dissertation. In: Universidade de TomarGoogle Scholar
  65. Newman B, Loendorf L (2005) Portable X-ray fluorescence analysis of rock art pigments. Plains Anthropol 50(195):277–283CrossRefGoogle Scholar
  66. Nuevo MJ, Sánchez AM, Oliveira C, (de) Oliveira J (2012) In situ energy dispersive X-ray fluorescence analysis of rock art pigments from the ‘Abrigo dos Gaivões’ and ‘Igreja dos Mouros’ caves (Portugal). X-Ray Spectrom 41:1–5CrossRefGoogle Scholar
  67. Olivares M, Castro K, Corchón MS, Gárate D, Murelaga X, Sarmiento A, Etxebarria N (2013) Non-invasive portable instrumentation to study Paleolithic rock paintings: the case of La Peña Cave in San Roman de Candamo (Asturias, Spain). J Archeol Sci 40:1354–1360CrossRefGoogle Scholar
  68. Pager HL, Kuper R, Breunig P, Lenssen-Erz T (1989) The rock paintings of the Upper Brandberg. Pt. 1. Heinrich-Institut, Köln.Google Scholar
  69. Pike AGW, Hoffmann DL, García-Diez M, Pettitt PB, Alcolea J, De Balbín R, González-Sainz C, de las Heras C, Lasheras JA, Montes R, Zilhão J (2012) U-series dating of Paleolithic art in 11 caves in Spain. Science 336:1409–1413CrossRefGoogle Scholar
  70. Plagnes V, Causse C, Fontugne M, Valladas H, Chazine J-M, Fage L-H (2003) Cross dating (Th/U-14C) of calcite covering prehistoric paintings in Borneo. Quat Res 60:172–179CrossRefGoogle Scholar
  71. Pleurdeau D, Imalwa E, Détroit F, Lesur J, Veldman A, Bahain J-J, Marais E (2012) Of sheep and men: earliest direct evidence of caprine domestication in Southern Africa at Leopard Cave (Erongo, Namibia). PLoS One 7(7):e40340CrossRefGoogle Scholar
  72. Prinsloo LC, Barnard W, Meiklejohn I, Hall K (2008) The first Raman spectroscopic study of San rock art in the Ukhahlamba Drakensberg Park, South Africa. J Raman Spectrosc 39:646–654CrossRefGoogle Scholar
  73. Prinsloo LC, Tournié A, Colomban P, Paris C, Bassett ST (2013) In search of the optimum Raman/IR signatures of potential ingredients used in San/Bushman rock art paint. J Archeol Sci 40:2981–2990CrossRefGoogle Scholar
  74. Richter J (1991) Fackelträger. In: Richter J (ed) Studien zur Urgeschichte Namibias. Heinrich Barth-Institut, Köln, pp. 39–55.Google Scholar
  75. Richter J (1995) Prähistorische Felskunst und Besiedlung in Zentralnamibia. Archäologische Informationen 18(1): 19–30.Google Scholar
  76. Richter J (2002) The giraffe people: Namibia’s prehistoric artists. In: Tides of the Desert—Gezeiten der Wüste, contributions to the archeology and environmental history of Africa in honor of Rudolf Kuper. Africa Praehistorica, pp. 523–534.Google Scholar
  77. Richter J, Vogelsang R (2008) Rock art in North-Western Central Namibia—its age and cultural background. In: Limprecht C, Biesele M (ed) Heritage and cultures in modern Namibia—in-depth views of the country. Klaus Hess Publishers, pp. 37–46.Google Scholar
  78. Roberts A, Campbell I, Pring A, Bell G, Watchman A, Popelka-Filcoff RS, Lenehan CE, Gibson CT, Franklin N, Mannum Aboriginal Community Association Inc (2015) A multidisciplinary investigation of a rock coating at Ngaut Ngaut (Devon Downs), South Australia. Aust Archeology 80:32–39CrossRefGoogle Scholar
  79. Roldán C, Murcia-Mascarós S, Ferrero J, Villaverde V, López E, Domingo I, Martínez R, Guillem PM (2010) Application of field portable EDXRF spectrometry to analysis of pigments of Levantine rock art. X-Ray Spectrom 5(39):243–250CrossRefGoogle Scholar
  80. Roldán C, Villaverde V, Ródenas I, Novelli F, Murcia S (2013) Preliminary analysis of Paleolithic black pigments in plaquettes from the Parpalló cave (Gandı́a, Spain) carried out by means of non-destructive techniques. J Archeol Sci 1(40):744–754CrossRefGoogle Scholar
  81. Rudner I (1982) Khoisan pigments and paints and their relationship to rock paintings. Annals of South African Museum 87. South African Museum, Cape Town.Google Scholar
  82. Rudner I (1983) Paints of the Khoisan rock artists. Goodwin Series 4:14–20CrossRefGoogle Scholar
  83. Russ J, Palma LR, Loyd DH, Boutton TW, Coy MA (1996) Origin of the whewellite-rich rock crust in the Lower Pecos region of southwest Texas and its significance to paleoclimate reconstructions. Quat Res 46:27–36CrossRefGoogle Scholar
  84. Russ J, Kaluarachchi WD, Drummond L, Edwards HGM (1999) The nature of a whewellite-rich rock crust associated with pictographs in southwestern Texas. Stud Conserv 44:91–103Google Scholar
  85. Salomon et al (2011) Stratégies spécialisées d’acquisition de pigments rouges durant le Châtelperronien de la grotte du Renne à Arcy-sur-Cure (Yonne, France). In: Paillet, P. (Ed.), Micro-analyses et datations de l’art préhistorique dans son contexte archéologique, PALEO, Paris, pp. 125–133.Google Scholar
  86. Salomon H, Vignaud C, Coquinot Y, Beck L, Stringer C, STRIVAY D, D’Errico F (2012) Selection and heating of coloring materials in the Mousterian level of Es-Skhul (c. 100,000 years B.P., Mount Carmel, Israel). Archaeometry 54:698–722CrossRefGoogle Scholar
  87. Sanhidrián JL, Valladas H, Medina-Alcaide MA, Pons-Branchu E, Quiles A (2017) New perspectives for 14C dating of parietal markings using CaCO3 thin layers: an example in Nerja cave (Spain). J Archeol Sci 12:74–80Google Scholar
  88. (de) Sanoit J, Cambellan D, Plassard F (2005) Caractérisation in situ du pigment noir de quelques œuvres pariétales de la Grotte de Rouffignac à l’aide d’un système portable d’analyze par fluorescence X (XRF). ArchéoSciences 29:61–68CrossRefGoogle Scholar
  89. Shao QF, Pons-Branchu E, Zhu QP, Wang W, Valladas H, Fontugne M (2017) High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China. Quat Res 88(1):1–13CrossRefGoogle Scholar
  90. Scherz ER (1970) Felsbilder in Südwest-Afrika. Böhlau Verlag. In: KölnGoogle Scholar
  91. Schreiber UM, Ajagbe SD, Holzförster F, Wanke A (2010) The Geology of Area 2114: Omaruru. Explanation of Sheet 2114 Scale 1:250000. Geological Survey of Namibia, Windhoek.Google Scholar
  92. Sepúlveda M, Gutierrez S, Carcamo J, Oyadener A, Valenzuela D, Monti I, Santoro CM (2015) In situ X-ray fluorescence analysis of rock art paintings along the coast and valleys of the Atacama desert, northern Chile. Journal of the Chilean Chemical Society 60(1): 2822–2826.Google Scholar
  93. Shackley MS (2011) An introduction to X-ray fluorescence spectrometry (XRF) analysis in archeology. In: Shackley MS (ed) X-ray fluorescence spectrometry (XRF) in geoarchaeology. Springer, New York, pp. 7–44.Google Scholar
  94. Silva A, Mauran G, Rosado T, Mirão J, Candeias A, Carpetudo C, Caldeira AT (2017) A arte rupestre da gruta do escoural—novos dados analíticos sobre a pintura paleolítica. In: Arnaud JM, Matins A (ed) Arqueologia em Portugal/2017—Estado da Questão. Greca—Artes Graficas, pp. 1003–1019.Google Scholar
  95. Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta B 62:63–68CrossRefGoogle Scholar
  96. Steyn R (2014) Portable X-ray fluorescence and nuclear microscopy techniques applied to the characterization of Southern African art paintings. Master dissertation, Stellenbosch University.Google Scholar
  97. Tournié A, Prinsloo LC, Paris C, Colomban P, Smith B (2011) The first in situ Raman spectroscopic study of San rock art in South Africa: procedures and preliminary results. J Raman Spectrosc 3(42):399–406CrossRefGoogle Scholar
  98. Valladas H, Pons-Branchu E, Dumoulin JP, Quiles A, Sanchidrían JL, Medina-Alcaide MA (2017) U/Th and 14C crossdating of parietal calcite deposits: application to Nerja cave (Andalusia, Spain) and future perspectives. Radiocarbon 59(6):1955–1967CrossRefGoogle Scholar
  99. Velliky E, Reimer/Yumks R (2013) Rock paintings of Squamish valley, British Columbia: geochemical analysis of pigments using portable X-ray fluorescence spectrometry (pXRF). Am Indian Rock Art 39:131–141Google Scholar
  100. Vinnicombe P (1972) Myth, motive, and selection in southern African rock art. Africa 42:192–204CrossRefGoogle Scholar
  101. Vinnicombe P (1976) People of the eland. Natal University Press, Pietermaritzburg.Google Scholar
  102. Wallis LA, Huntley J, Marsh M, Watchman A, Ewen A, Strano A (2017) PXRF analysis of a yellow ochre quarry and rock art motifs in the central Pilbara. J Anthropol Soc South Aust 40:134–155Google Scholar
  103. Ward I, Watchman AL, Cole N, Morwood M (2001) Identification of minerals in pigments from aboriginal rock art in the Laura and Kimberley regions, Australia. Rock Art Res 18:15–23Google Scholar
  104. Watchman A (1990) The weathering of Australian rock paintings. In: 50 ans après la découverte de Lascaux. Journée internationales d’étude sur la conservation de l’art rupestre. Dordogne (France) 20–23 aout 1990: 21–28.Google Scholar
  105. Watchman A (1991) Age and composition of oxalate-rich crusts in the northern territory. Australia Studies in Conservation 36:24–32Google Scholar
  106. Wendt WE (1972) Preliminary report on an archeological research programme in South West Africa. Cimbebasia 2: 1–61.Google Scholar
  107. Wesley D, Jones T, Reepmeyer C (2014) Pigment geochemistry as chronological marker: the case of lead pigment in rock art in the Urrmarning ‘Red Lily Lagoon’ rock art precinct, western Arnhem Land. Australian Archeology 78(1): 1–9.Google Scholar
  108. Willcox AR (1978) An analysis of the function of rock art. S Afr J Sci 74:59–64Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UMR 7194 Histoire Naturelle de l’Homme Préhistorique (HNHP), MNHN- CNRS-UPVDAlliance Sorbonne Université, Muséum National d’Histoire Naturelle, Musée de l’HommeParisFrance
  2. 2.UMR 7193 Institut des Sciences de la Terre de Paris (ISTeP)Sorbonne Université-CNRS, Alliance Sorbonne UniversitéParisFrance
  3. 3.Department of Archaeology and Heritage ResearchNational Heritage Council of NamibiaWindhoekNamibia

Personalised recommendations