Archaeological and Anthropological Sciences

, Volume 11, Issue 9, pp 4467–4489 | Cite as

Potentialities of the virtual analysis of lithic refitting: case studies from the Middle and Upper Paleolithic

  • Davide Delpiano
  • Arianna Cocilova
  • Filippo Zangrossi
  • Marco PeresaniEmail author
Original Paper


The knapping methods used between the Middle and Upper Paleolithic show a progressive technical refinement that usually implies, for blade technology, a higher conceptual level related to greater productive effectiveness and capacity of adaptation. The analysis of multiple refittings, providing direct information on core reduction modalities, can be useful in order to clarify these aspects, especially when the findings are framed in their respective finding contexts. In addition, the virtual analysis of multiple refittings can expand considerably the information baggage of these tools in order to infer information on the volumetric structuration of the reduction, the sequences productivity, and the analysis of the missing products (voids) within the refittings. All this allows to overcome the physical limitations typical of multiple refittings, making possible the full exploitation of their potentials. The two examined case studies, coming from different contexts of the northern Italian Paleolithic, allow to deepen the theoretical concepts and practical applications of discoid and laminar volumetric reduction, characterized by different technical and behavioral implications. The three-dimensional approach made possible to identify and reconstruct actions, expedients, objectives of the sequences, and the formation dynamics of finding contexts, highlighting technological behaviors directly related to the site’s function and the occupation length. Finally, a different degree of dependence on strictly ecological factors has been recognized for laminar and discoid technologies.


Virtual refitting 3D visual technology Middle Palaeolithic Discoid method Gravettian Blade method 



Research at Fumane is coordinated by the Ferrara University (M.P.) in the framework of a project supported by the Ministry of Culture-Veneto Archaeological Superintendency, public institutions (Lessinia Mountain Community-Regional Natural Park, Fumane Municipality), and private associations and companies. Research at Piovesello is coordinated by the Ferrara University and the National Research Council of Italy in the framework of an archeological project supported by the Ministry of Culture–Emilia-Romagna Archaeological Superintendency and public institutions (Ferriere Municipality, Natural History Museum of Milano, Natural History Museum of Piacenza). Logistic support was provided by the municipality of Ferriere. The Breuckmann SmartScans 3D used for this work are based at the Neanderthal Museum and at the University of Ferrara, Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche. The authors thank Owen A. Higgins for the revision of the english text, Julie Arnaud for the use of the instrument at the University of Ferrara, Andras Pastoors of the University of Erlangen for the use of the Breuckmann 3D Smartscan at Neanderthal Museum, and anonymous reviewers for providing contribution to considerably ameliorate the manuscript. The authors declare that they have no conflict of interest.

Author contributions

D.D. and M.P. designed the research: D.D., A.C., and F.Z. analyzed and elaborated data; D.D., A.C., F.Z., and M.P. wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Andrefsky W (1998) Lithics. Macroscopic approaches to analysis. Cambridge Manuals in Archaeology, CambridgeGoogle Scholar
  2. Bamforth DB (1986) Technological efficiency and tool curation. Am Anthropol 51:38–50Google Scholar
  3. Bar-Yosef O, Kuhn SL (1999) The big deal about blades: laminar technologies and human evolution. Am Anthropol 101:322–338CrossRefGoogle Scholar
  4. Bertran P, Lenoble A, Todisco D, Desrosiers PM, Sørensen M (2012) Particle size distribution of lithic assemblages and taphonomy of Palaeolithic sites. J Archaeol Sci 39(10):3148–3166CrossRefGoogle Scholar
  5. Binford LR (1978) Dimensional analysis of behavior and site structure: learning from an Eskimo hunting stand. Am Antiq 43(3):330–361CrossRefGoogle Scholar
  6. Boëda E (1990) De la surface au volume, analyse des conceptions des débitages levallois et laminaire. In: Farizy C (Ed) Paléolithique moyen et Paléolithique supérieur ancien en Europe. Mémoires du Musée de Préhist d'Ile-de-France, 3, pp 63–68Google Scholar
  7. Boëda E (1993) Le débitage discoide et le débitage Levallois recurrent centripète. Bull Soc Préhist Fr 90:392–404CrossRefGoogle Scholar
  8. Boëda E (2013) Techno-logique & Technologie. Une Paléo-histoire des objets lithiques tranchants. Paris, @rchéo-éditions.comGoogle Scholar
  9. Boëda E, Geneste J-M, Meignen L (1990) Identification du Chaînes Opératoires lithiques du Paléolithique ancien et moyen. Paleo 2:43–80Google Scholar
  10. Bourguignon L, Brenet M, Folgado M, Ortega I (2011) Aproximación tecno-económica del debitage discoide de puntas pseudo-Levallois: el aporte de la experimentación. In: 2nd Congreso Internacional de arqueologia experimental, pp 53–59Google Scholar
  11. Brenet M, Bourguignon L, Folgado M, Ortega I (2009) Élaboration d’un protocole d’expérimentation lithique pour la compréhension des comportements techniques et techno- économiques au Paléolithique moyen. Nouv Archeol 118:60–64Google Scholar
  12. Breuckmann B, Arias Cabal P, Mélard N, Ontañón Peredo R, Pastoors A, Teira Mayolini LC, Fernandez Vega PA, Weniger GC (2009) Surface scanning—new perspectives for archaeological data management and methodology? In: Frischer B, Webb Crawford J, Koller D (eds) Making History Interactive. Computer Applications and Quantitative Methods in Archaeology (CAA). Archaeopress, Oxford, pp 42–47Google Scholar
  13. Broglio A, Cremaschi M, Peresani M, Bertola S, Bolognesi L, De Stefani M, Fiocchi C, Gurioli F, Marini D (2003) L’Aurignacien dans le territoire préalpin: la Grotte de Fumane. In: Vasil’ev SA, Soffer O, Kozlowski J (Eds) Perceived landscapes and built environments. The cultural geography of Late Palaeolithic Eurasia. Proceedings XIV UISPP Congress, Section Upper Palaeolithic, Coll 6.2 and 6.5, BAR, International Series, 1122 pp 93–104Google Scholar
  14. Burke A, Kageyama M, Latombe G, Fasel M, Vrac M, Ramstein G, James PMA (2017) Risky business: the impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum. Quat Sci Rev 164:217–229CrossRefGoogle Scholar
  15. Chacón MG, Détroit F, Coudenneau A, Moncel M-H (2016) Morphometric assessment of convergent tool technology and function during the Early Middle Palaeolithic: The Case of Payre, France. PLoS One 11(5):e0155316. CrossRefGoogle Scholar
  16. Clarkson C, Vinicius L, Mirazón Lahr M (2006) Quantifying flake scar patterning on cores using 3D recording techniques. J Archaeol Sci 33:132–142CrossRefGoogle Scholar
  17. Cole SC (2009) Technological efficiency as an adaptive behavior among Paleolithic Hunter-Gatherers: evidence from La-Côte, Caminade Est, and Le Flageolet I, France. In: Adams B, Blades BS (eds) Lithic materials and paleolithic societies. Wiley-Blackwell, Oxford, pp 127–143CrossRefGoogle Scholar
  18. Cziesla E (1987) L’analyse des raccords ou le concept du dynamisme en préhistoire. Bull Soc Préhist Luxembg 9:77–111Google Scholar
  19. Cziesla E, Eickhoff S, Arts N, Winter D (1990) The big puzzle. International symposium on refitting stone artefacts. Monrepos 1987. Studies in Modern Archaeology 1, Holos, Bonn, pp 9–44Google Scholar
  20. Delagnes A, Ropars A (1996) Paleolithique moyen en Pays de Caux (Haute-Normandie): Le Pucheuil, Etoutteville, deux gisements de plein air en milieu loessique. Maison des Sciences de l'Homme, D.A.F. 56Google Scholar
  21. Delpiano D, Peresani M, Pastoors A (2017) The contribution of 3D visual technology to the study of Palaeolithic knapped stones based on refitting. Digit Appl Archaeol Cult Herit 4:28–38Google Scholar
  22. Delpiano D, Peresani M (2017) Exploring Neanderthal skills and lithic economy. The implication of a refitted discoid reduction sequence reconstructed using 3D virtual analysis. Palevol 16(8):865–877CrossRefGoogle Scholar
  23. Delpiano D, Heasley K, Peresani M (2018) Assessing Neanderthal land use and lithic raw material management in discoid technology. J Anthropol Sci 96:1–22Google Scholar
  24. Eren MI, Greenspan A, Sampson CG (2008) Are Upper Paleolithic blade cores more productive than Middle Paleolithic discoidal cores? A replication experiment. J Hum Evol 55:952–961CrossRefGoogle Scholar
  25. Fiore I, Gala M, Romandini M, Cocca E, Tagliacozzo A, Peresani M (2016) From feathers to food: reconstructing the complete exploitation of avifaunal resources by Neanderthals at Grotta di Fumane, unit A9. Quat Int 421:134–153CrossRefGoogle Scholar
  26. Gartski K (2017) Virtual representation: the production of 3D digital artifacts. J Archaeol Method Theory 24:726–750CrossRefGoogle Scholar
  27. Gouëdo JM (1990) Les technologies lithiques du Chatelperronien de la couche X de la Grotte du Renne d’Arcy-sur-Cure, In: Farizy C (ed) Paléolithique moyen et Paléolithique supérieur ancien en Europe. Mémoires du Musée de Préhist d'Ile-de-France, 3, pp 305–308Google Scholar
  28. Grosman L, Oded S, Uzy S (2008) On the application of 3-D scanning technology for the documentation and typology of lithic artifacts. J Archaeol Sci 35:3101–3110CrossRefGoogle Scholar
  29. Harris EC (1979) Principles of archaeological stratigraphy. Academic Press, London and San DiegoGoogle Scholar
  30. Hayden B, Franco N, Spafford J (1996) Evaluating lithic strategies and design criteria. In: Odell GH (ed) Stone tools: theoretical insights into human prehistory. Plenum Press, New York, pp 9–45CrossRefGoogle Scholar
  31. Hofman JL, Enloe JG (eds) (1992) Piecing together the past: applications of refitting studies in archaeology, vol 578. BAR International Series, OxfordGoogle Scholar
  32. Inizan ML, Reduron-Ballinger M, Roche H, Tixier J (1995) Technologie de la Pierre Taillée, CREP. In: MeudonGoogle Scholar
  33. Karlin C (1992) Analyse d'un processus technique: le débitage laminaire des magdaléniens de Pincevent (Seine et Marne). In: Terradas X, Parpal A, Plana C (eds) Mora R. Tecnología y cadenas operativas líticas, Barcelona, pp 125–162Google Scholar
  34. Jennings TA, Pevny CD, Dickens WA (2010) A biface and blade core efficiency experiment: implications for Early Paleoindian technological organization. J Archaeol Sci 37:2155–2164CrossRefGoogle Scholar
  35. Lemorini C, Peresani M, Rossetti P, Malerba G, Giacobini G (2003) Techno-morphological and use-wear functional analysis: an integrated approach to the study of a discoid industry. In: Peresani M (ed) Discoid lithic technology. Advances and implications. BAR international series, 1120Google Scholar
  36. Luhmann T, Robson S, Kype S, Boehm J (2013) Close-range photogrammetry and 3D imaging, 2nd edn. Walter de Gruyter GmbH, BerlinCrossRefGoogle Scholar
  37. Lycett SJ, Cramon-Taubadel N, Foley RA (2006) A crossbeam co-ordinate caliper for the morphometric analysis of lithic nuclei: a description, test and empirical examples of application. J Archaeol Sci 33(6):847–861CrossRefGoogle Scholar
  38. Maier A, Lehmkuhl F, Ludwig P, Melles M, Schmidt I, Shao Y, Zeeden C, Zimmermann A (2016) Demographic estimates of hunter-gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quat Int 425:49–61CrossRefGoogle Scholar
  39. Martinez-Moreno J, Mora R, de la Torre I, Benito Calvo A (2012) The role of flakes in the early Upper Palaeolithic 497D assemblage of Cova Gran de Santa Linya (southeastern pre-pyrenees, Spain). In: Pastoors A, Peresani M (eds) FLAKES NOT BLADES—discussing the role of flake making at the onset of the Upper Palaeolithic, Proceedings of the Workshop, Wissenschaftliche Schriften des Neanderthal Museums 5, pp 85–104Google Scholar
  40. McCall GS (2010) Refitting rate as a tool for investigating geological and behavioral aspects of site formation: theoretical and methodological considerations. Lithic Technol 35(1):25–35Google Scholar
  41. Michel A (2012) The production of flakes and laminar flakes during the middle Aurignacian: the case of layer 8 of the Pataud rock shelter (France). In: Pastoors A, Peresani M (eds) FLAKES NOT BLADES—discussing the role of flake making at the onset of the upper Palaeolithic, Proceedings of the Workshop, Wissenschaftliche Schriften des Neanderthal Museums 5, pp 119–131Google Scholar
  42. Morrow TM (1996) Lithic refitting and archaeological site formation processes. A case study from the Twin Ditch Site, Greene County, Illinois. In: Odell GH (ed) Stone tools: theoretical insights into human Prehistory. Interdisciplinary Contributions to Archaeology, Springer, pp 345–373Google Scholar
  43. Negrino F, Starnini E (2006) Modelli di sfruttamento e circolazione delle materie prime per l'industria litica scheggiata tra Paleolitico inferiore ed Età del Rame in Liguria. In: Cocchi Genick D (ed) Materie prime e scambi nella preistoria italiana. Atti XXXIX Riunione Scientifica IIPP. Istituto Italiano di Preistoria e Protostoria, Firenze, pp 283–298Google Scholar
  44. Negrino F, Colombo M, Cremaschi M, Serradimigni M, Tozzi C, Ghiretti A (2017) Estese officine litiche del Paleolitico medio-superiore sui rilievi appenninici di Monte Lama-Castellaccio-Pràrbera (Bardi, Parma). Preistoria e Protostoria dell’Emilia Romagna – I. Studi di Preistoria e Protostoria 3, I. Istituto Italiano di Preistoria e Protostoria, Firenze, pp 59–68Google Scholar
  45. Pastoors A, Weniger G-C (2011) Close range sensing for generating 3D objects in prehistoric archaeology. In: Lenz-Wiedemann V, Bareth G (eds) Proceedings of the ISPRS WG VII/5 Workshop, Cologne, pp 103–106Google Scholar
  46. Pastoors A, Cantalejo P (2014) Aplicaciones con escáner a los grabados prehistóricos. In: José Ramos (ed) Cueva de Ardales. Intervenciones Arqueológicas 2011–2014. Ediciones Pinsapar, Benaoján, 115–118Google Scholar
  47. Pelegrin J (1995) Technologie lithique. Le Châtelperronien de Roc-de-Combe (Cot) et de La Côte (Dordogne). CNRS éditions, ParisGoogle Scholar
  48. Pelegrin J, Karlin C, Bod P (1988) Chaînes Opératoires: un outil pour le préhistorien. In: Tixier J (ed) Technologie préhistorique. CNRS éditions, Paris, pp 55–62Google Scholar
  49. Peña Alonso P, Vega Toscano G (2012) Flaking technology strategies in early Upper Palaeolithic levels from the southeastern Iberian Peninsula. In: Pastoors A, Peresani M (eds) FLAKES NOT BLADES—discussing the role of flake making at the onset of the Upper Palaeolithic, Proceedings of the Workshop, Wissenschaftliche Schriften des Neanderthal Museums 5, pp 51–68Google Scholar
  50. Peresani M (1998) La variabilité du débitage Discoïde dans la Grotte de Fumane (Italie du nord). Paléo 10:123–146CrossRefGoogle Scholar
  51. Peresani M (2003) Discoid lithic technology. Advances and implications. BAR International Series, 1120Google Scholar
  52. Peresani M (2012) Fifty thousand years of flint knapping and tool shaping across the Mousterian and Uluzzian sequence of Fumane cave. Quat Int 247:125–150CrossRefGoogle Scholar
  53. Peresani M, Centi L, Di Taranto E (2013a) Blades, bladelets and flakes: a case of variability in tool design at the onset of the Middle – Upper Palaeolithic transition in Italy. Palevol 12(4):211–221CrossRefGoogle Scholar
  54. Peresani M, Vanhaeren M, Quaggiotto E, Queffelec A, D’Errico F (2013b) An Ochered Fossil Marine Shell from the Mousterian of Fumane Cave, Italy. PLoS One 8(7):e68572CrossRefGoogle Scholar
  55. Peresani M, Basile D, Centi L, Delpiano D, Duches R, Jéquier C, Nannini N, Obradović M, Picin A, Romandini M, (2014) Grotta di Fumane. Risultati della campagna di scavo e ricerche 2012. NAVe – Notizie di Archeologia del Veneto 1/2012Google Scholar
  56. Peresani M, Cristiani E, Romandini M (2016) The Uluzzian technology of Grotta di Fumane and its implication for reconstructing cultural dynamics in the Middle – Upper Palaeolithic transition of Western Eurasia. J Hum Evol 91:36–56CrossRefGoogle Scholar
  57. Peresani M, Delpiano D, Duches R, Gennai J, Marcazzan D, Nannini N, Romandini M, Aleo A, Cocilova A (2017) Il Musteriano delle unità A10 e A11 a Grotta di Fumane (VR). Risultati delle campagne di scavo 2014 e 2016. FOLD&R (Fasti On Line Documenti & Ricerche), 397Google Scholar
  58. Peresani M, Ravazzi C, Pini R, Margaritora D, Cocilova A, Delpiano D, Bertola S, Castellano L, Fogliazza F, Martino G, Nicosia C, Simon P (2018) Human frequentation and vegetation-climate relationships in the Greenland Stadial 5 at the Piovesello site on the Northern Apennine watershed. Quat Res 90:503–528Google Scholar
  59. Picin A, Vaquero M (2016) Flake productivity in Levallois recurrent centripetal and bifacial discoid technologies: new insights from experimental and archaeological lithic series. J Archaeol Sci Rep 8:70–81Google Scholar
  60. Porraz G, Simon P, Pasquini A (2010) Identité technique et comportements économiques des groupes proto-aurignaciens à la grotte de l’Observatoire (principauté de Monaco). Gallia Préhistoire 52:33–59CrossRefGoogle Scholar
  61. Porter S, Roussel M, Soressi MA (2017) Simple photogrammetry rig for the reliable creation of 3D artifact models in the field lithic examples from the Early Upper Paleolithic Sequence of Les Cottés (France). Adv Archaeol Pract 4(1)Google Scholar
  62. Prasciunas MM (2007) Bifacial cores and flake production efficiency: an experimental test of technological assumptions. Am Anthropol 72:334–348Google Scholar
  63. Rick JW (1976) Downslope movement and archaeological intrasite spatial analysis. Am Antiq 41(2):133–144CrossRefGoogle Scholar
  64. Riel-Salvatore J, Bae JM, Clark GA, Lindly J, McCartney P, Razdan A (2002) The past meets the future: 3D visualization technology and lithic analysis at Wadi al-Hasa Locality 623X, Jordan. J Hum Evol 42(3):A39Google Scholar
  65. Roebroeks W (1988) From find scatters to early hominid behaviour. A study of Middle Palaeolithic Riverside Settlements at Maastricht-Belvédère (The Netherlands). Leiden University Press, LeidenGoogle Scholar
  66. Romagnoli F, Vaquero M (2016) Quantitative stone tools intra-site point and orientation patterns of a Middle Palaeolithic living floor: a GIS multi-scalar spatial and temporal approach. Quartär 63:47–60Google Scholar
  67. Romandini M, Nannini N, Tagliacozzo A, Peresani M (2014) The ungulate assemblage from layer A9 at Grotta di Fumane, Italy: a zooarchaeological contribution to the reconstruction of Neanderthal ecology. Quat Int 337:11–27CrossRefGoogle Scholar
  68. Roux V, Bril B (2005) General introduction: a dynamic systems framework for studying a uniquely hominin innovation. In: Roux V, Bril B (eds) Stone knapping: the necessary conditions for a uniquely hominin behaviour. McDonald Institute for Archaeological Research, Cambridge, pp 1–22Google Scholar
  69. Schick KD (1987) Experimentally-derived criteria for assessing hydrologic disturbance of archaeological sites. In: Nash DT, Petraglia MD (eds) Natural formation processes and the archaeological record. BAR International Series 352, pp 86–107Google Scholar
  70. Schiffer MB (1975) Archaeology as behavioral science. Am Anthropol 77:836–848CrossRefGoogle Scholar
  71. Schurmans UA, De Bie M (2007) Fitting rocks: lithic refitting examined. BAR International Series 1596Google Scholar
  72. Shott MJ, Trail BW (2010) Exploring new approaches to lithic analysis: laser scanning and geometric morphometrics. Lithic Technol 35(2):195–220CrossRefGoogle Scholar
  73. Skar B, Coulson S (1986) Evidence of behaviour from refitting—a case study. Nor Archaeol Rev 19(2):90–102CrossRefGoogle Scholar
  74. Slimak L (2003) Les débitages Discoïdes moustériens: évaluation d'un concept technologique. In: Peresani M (ed) Discoid lithic technology. Advances and Implications. BAR International Series 1120, pp 33–65Google Scholar
  75. Slimak L, Bressy C, Guendon JL, Montoya C, Ollivier V, Renault S (2005) Exploitation paléolithique des silex oligocènes en haute Provence (France). Caractérisation des matières premières et processus d’acquisition. Palevol 4:359–367CrossRefGoogle Scholar
  76. Slizewski A, Semal P (2009) Experiences with low and high cost 3D surface scanners. Quartär 56:131–138Google Scholar
  77. Sumner T, Riddle A (2008) Virtual Paleolithic: assays in photogrammetric three-dimensional artifact modelling. PaleoAnthropology 158–169Google Scholar
  78. Tallavaara M, Luoto M, Korhonen N, Järvinen H, Seppä H (2015) Human population dynamics in Europe over the last glacial maximum. Proc Natl Acad Sci 112(27):8232–8237CrossRefGoogle Scholar
  79. Tixier J, Inizan ML, Roche H (1980) Préhistoire de la pierre taillée. Terminologie et téchnologie. CREP, CNRS éditions, 1, MeudonGoogle Scholar
  80. Tomasso A, Porraz G (2016) Hunter-gatherer mobility and embedded raw-material procurement strategies in the Mediterranean Upper Paleolithic. Evol Anthropol 25:164–174CrossRefGoogle Scholar
  81. Turq A, Roebroeks W, Bourguignon L, Faivre J-P (2013) The fragmented character of Middle Palaeolithic stone tool technology. J Hum Evol 65(5):641–655Google Scholar
  82. Turq A, Faivre J-P, Gravina B, Bourguignon L (2016) Building models of Neanderthal territories from raw material transports in the Aquitaine Basin (southwestern France). Quat Int 433(part B):88–101Google Scholar
  83. Uthmeier T (2004) Micoquien, Aurignacien und Gravettien in Bayern. Eine regionale Studie zum Übergang vom Mittel- zum Jungpaläolithikum. Habelt, BonnGoogle Scholar
  84. Vaquero M, Chacón MG, Rando JM (2007) The interpretive potential of lithic refits in a Middle Paleolithic site: Abric Romaní (Capellades, Spain). In: Schurmans U, De Bie M (eds) Fitting Rocks. Lithic Refitting Examined. BAR International Series 1596, pp 75–89Google Scholar
  85. Vaquero M, Bargallo A, Chacòn MG, Romagnoli F, Sañudo P (2015) Lithic recycling in a Middle Paleolithic expedient context: evidence from the Abric Romaní (Capellades, Spain). Quat Int 361:212–228CrossRefGoogle Scholar
  86. Vaquero M, Fernandez-Laso MC, Chacon MG, Romagnoli F, Rosell J, Sañudo P (2017) Moving things: comparing lithic and bone refits from a middle Paleolithic site. J Anthropol Archaeol 48:262–280CrossRefGoogle Scholar
  87. Villa P (1982) Conjoinable pieces and site formation processes. Am Antiq 47:276–290CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Davide Delpiano
    • 1
  • Arianna Cocilova
    • 1
  • Filippo Zangrossi
    • 1
  • Marco Peresani
    • 1
    Email author
  1. 1.Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e AntropologicheUniversità di FerraraFerraraItaly

Personalised recommendations