Lost in transition: the dietary shifts from Late Antiquity to the Early Middle Ages in the North Eastern Iberian Peninsula

  • Xavier JordanaEmail author
  • Assumpció Malgosa
  • Bruno Casté
  • Carlos TorneroEmail author
Original Paper


The Late Antiquity to the Early Middle age transition in the North Eastern Iberian Peninsula was a historical period of cultural, social and political changes. Both Germanics and North African peoples settled in this region in successive migratory waves. The impact of these population movements on the cultural habits of the local population has been barely explored. This paper explores the dietary changes of the population who were buried in the necropolis of the Churches of Sant Pere de Terrassa (Barcelona, Spain) during the Visigoth (fifth to eighth centuries ad) and Carolingian periods (ninth to tenth centuries ad). This study investigates the δ13C and δ15N stable isotopic values in bone collagen from 68 human samples and 36 faunal remains in order to improve the understanding of dietary changes that occurred during this transition. The results indicate a human diet based on C3-plants and livestock sources. On average, the Visigoth samples exhibited an enriched isotopic signal compared to that of the Carolingian period, which may be attributed to the consumption of high trophic level of animal protein. Some δ13C results of the adult human samples suggest that C4-plants (most probably millet) made proportionately smaller but significant contributions to the diet during the Visigoth period. The paleodietary data obtained here will be important for future further studies focused on the transition from the Late Antiquity to the Early Medieval period in the Iberian Peninsula, and the attending regional scale of changes. This will also give insight about how profound a transformation in policy and economy occurred during that period affected human consumer patterns in the region.


Human palaeodiet Weaning Stable isotopes Carbon and nitrogen Human osteology Tooth wear 



All stable isotopic analyses were carried out at the Institute of Environmental Science and Technology (ICTA), with technical assistance by Dr. Pau Comes and scientific supervision from Dr A. Rosell. Dr C. Tornero acknowledges the Beatriu de Pinós postdoctoral fellowship (BP-MSCA Cofound Code 2016-00346) from the Agency for Management of University and Research Grants (AGAUR), Government of Catalonia, Spain. The work was supported by Generalitat de Catalunya (AGAUR, ref. 2017SGR1630). We thank Antonio Moro for providing the archaeological information for the site. We also thank two anonymous reviewers for their helpful comments and Colin Forrestal for English proofreading. Finally, we would like to thank Michelle Alexander and Olalla López-Costas, the guest editors, the invitation to take part in this special issue “Iberian Paleodiet”


  1. Adamson MW (2004) Food in medieval times. In: Connecticut. Greenwood Press, WestportGoogle Scholar
  2. Alonso N (1999) “De la llavor a la farina: els processos agrícoles protohistòrics a la Catalunya Occidental”. Monographies d'Archéologie Méditerranéenne 4. CNRS, Lattes, FranceGoogle Scholar
  3. Ambrose SH (1990) Preparation and characterization of bone and tooth collagen for isotopic analysis. J Archaeol Sci 17:431–451CrossRefGoogle Scholar
  4. Ambrose SH, Norr L (1993) Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert JB, Grupe G (eds) Prehistoric Human Bone—Archaeology at the Molecular Level. Springer-Verlag, Berlin, pp 1–37Google Scholar
  5. Balasse M, Tresset A, Ambrose SH (2006) Stable isotope evidence (delta C-13, delta O-18) for winter feeding on seaweed by Neolithic sheep of Scotland. J Zool 270:170–176Google Scholar
  6. Barone R (1976) Anatomie comparée des mammiferes domestiques. Vigot Fréres Editeurs, ParisGoogle Scholar
  7. de Bello F, Buchmann N, Casals P, Leps J, Sebastia M-T (2009) Relating plant species and functional diversity to community d13C in NE Spain patures. Agric Ecosyst Environ 131:303–307CrossRefGoogle Scholar
  8. Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10(6):1239–1244CrossRefGoogle Scholar
  9. Bocherens H, Drucker D (2003) Trophic Level Isotopic Enrichment of Carbon and Nitrogen in Bone Collagen: Case Studies from Recent and Ancient Terrestrial Ecosystems. Int J Osteoarchaeol 13:46–53Google Scholar
  10. Bocherens H, Fizet M, Mariotti A, Lange-Badré B, Vandermeersch B, Borel JP, Bellon G (1991) Isotopic biogeochemistry (13C, 15N) of fossil vertebrate collagen: implications for the study of a fossil food web including Neandertal Man. J Hum Evol 20:481–492CrossRefGoogle Scholar
  11. Bourbou C, Fuller BT, Garvie-Lok SJ, Richards MP (2013) Nursing mothers and feeding bottles: reconstructing breastfeeding and weaning patterns in Greek Byzantine populations (6the15th centuries AD) using carbon and nitrogen stable isotope ratios. J Archaeol Sci 40:3903–3913CrossRefGoogle Scholar
  12. Buikstra J, Ubelaker D (1994) Standards for data collection from human skeletal remains. Arkansas Archaeological Survey Research Series, 44, FayettevilleGoogle Scholar
  13. Bull G, Payne S (1982) Tooth eruption and epiphysial fusion in pigs and wild boar. In: Wilson et al (eds) Ageing and sexing animal bones from archaeological sites. B.A.R., Oxford, p 55–71Google Scholar
  14. Dembińska M (1999) Food and drink in medieval Poland: rediscovering a cuisine of the past. City of Philadelphia Press, PhiladelphiaGoogle Scholar
  15. DeNiro MJ (1985) Post-mortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstructions. Nature 317:806–809CrossRefGoogle Scholar
  16. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  17. Ferembach D, Schwidetzky I, Stloukal M (1979) Recommendations for age and sex diagnoses of skeletons. Bull Mém Soc Anthropol Paris 6(1):7–45CrossRefGoogle Scholar
  18. Ferran D (1987) “L’època tardoromana i l’administració visigoda fins a la presència musulmana (segles del III al VIII). In: Benaul J, Berenguer F, Borfo A, Coma J, Ferran D, Lluch J, Marcet X, Moro A, Puy J, Roca P et al. (eds) Història de Terrassa, Ajuntament de Terrassa: Terrassa, 109–124Google Scholar
  19. Fisher A, Olsen J, Richards M, Heinemeier J, Sveinbjornsdottir AE, Bennike P (2007) Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. J Archaeol Sci 34:2125–2150CrossRefGoogle Scholar
  20. Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice cores record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238CrossRefGoogle Scholar
  21. Garcia M, Moro A, Tuset F (2003) De conjunt paleocristià i catedralici a conjunt parroquial. Transformacions i canvis d’ús de les esglésies de Sant Pere de Terrassa Segles IV al XVIII Terme 18:29–58Google Scholar
  22. García-Collado MI (2016) Food consumption patterns and social inequality in an early medieval rural community in the Centre of the Iberian Peninsula. . Social Complexity in Early Medieval Rural Communities. In: Quirós JA (ed) The North-Western Iberian archaeological record. Archaeopress, Oxford, pp 59–78Google Scholar
  23. Grant A (1982) The use of toothwear as a guide to the age of domestic ungulates. Ageing and sexing animal bones from archaeological sites. BAR Br Ser 109:91–108Google Scholar
  24. Gügel IL, Grupe G, Kunzelmann KH (2001) Simulation of dental microwear: characteristic traces by opal phytoliths give clues to ancient human dietary behavior. Am J Phys Anthropol 114:124–138CrossRefGoogle Scholar
  25. Hakenbeck S, McManus E, Geisler H, Grupe G, O’Connell TC (2010) Diet and mobility in Early Medieval Bavaria: a study of carbon and nitrogen stable isotopes. Am J Phys Anthropol 143:235–249CrossRefGoogle Scholar
  26. Hedges REM, Clement JG, Thomas CDL, O’Connell TC (2007) Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol 133:808–816CrossRefGoogle Scholar
  27. Iacumin P, Galli E, Cavalli F, Cecere L (2014) C4-consumers in southern Europe: the case of Friuli V.G. (NE-Italy) during Early and Central Middle Ages. Am J Phys Anthropol 154:561–574. CrossRefGoogle Scholar
  28. Iacumin P, Nikolaev V, Ramigni M (2000) C and N isotope measurements on Eurasian fossil mammals, 40.000 to 10.000 years BP: herbivore physiologies and paleoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 163:22–47CrossRefGoogle Scholar
  29. Jordana X (2007) “Caracterització i Evolució d’una Comunitat Medieval Catalana. Estudi Bioantropològic de les Inhumacions de les Esglésies de Sant Pere”. PhD thesis, Universitat Autonòma de Barcelona, Barcelona.
  30. Jordana X, Isidro A, Malgosa A (2010) Interpreting diachronic osteological variation at the medieval necropolis of the Sant Pere Churches (Terrassa, Spain). Int J Osteoarchaeol 20(6):670–692CrossRefGoogle Scholar
  31. Katzenberg MA (2000) Stable isotope analysis: a tool for studying past diet, demography, and life history. In: Katzenberg A, Saunders SR (eds) Biological anthropology of the human skeleton. Wiley-Liss, New York, pp 305–328Google Scholar
  32. Koch PL (2007) Isotopic study of the biology of modern and fossil vertebrates. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science, second edn. Blackwell Publishing, Boston, pp 99–154CrossRefGoogle Scholar
  33. Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of paleoecology and paleoclimate. Proc Natl Acad Sci U S A 107(46):19691–19695CrossRefGoogle Scholar
  34. Krogman WM, Iscan MY (1986) The human skeleton in forensic medicine. In: Ch C Thomas. Springfield, IllinoisGoogle Scholar
  35. Lalueza-Fox C, González A, Vives S (1996) Cranial variation in the Iberian Peninsula and the Balearic Islands: inferences about the history of the population. Am J Phys Anthropol 99(3):413–428CrossRefGoogle Scholar
  36. Larsen CS (1997) Bioarchaeology: interpreting behavior Fromthe human skeleton. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Lee-Thorp JA (2008) On isotopes and old bones. Archaeometry 50:925–950CrossRefGoogle Scholar
  38. Lightfoot E, Slaus M, O’Connell TC (2012) Changing cultures, changing cuisines: cultural transitions and dietary change in Iron Age, Roman, and Early Medieval Croatia. Am J Phys Anthropol 148:543–556CrossRefGoogle Scholar
  39. Longin R (1971) New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–242CrossRefGoogle Scholar
  40. López-Costas O, Müldner G (2016) Fringes of the empire: diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am J Phys Anthropol 161:141–154CrossRefGoogle Scholar
  41. Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP (1985) Chronological metamorphosis of the auricular surface of the ilium—a new method for the determination of adult skeletal age at death. Am J Phys Anthropol 68(1):15–28CrossRefGoogle Scholar
  42. Lubritto C, García Collado MI, Ricci P, Altieri S, Sirignano C, Quirós Castillo JA (2017) New dietary evidence on medieval rural communities of the Basque Country (Spain) and its surroundings from carbon and nitrogen stable isotope analyses: social insights, Diachronic Changes and Geographic Comparison. Int J Osteoarchaeol 27:984–1002CrossRefGoogle Scholar
  43. Marino BD, McElroy MB (1991) Isotopic composition of atmopheric CO2 inferred from carbon in C4 plant cellulose. Nature 349:127–131CrossRefGoogle Scholar
  44. Mateu AL (1993) Micro-ecology and some related aspects of C4 plants living in Europe. Photosynthetica 29:583–594Google Scholar
  45. Meindl RS, Lovejoy CO (1985) Ectocranial suture closure—a revised method for the determination of skeletal age at death based on the lateral-anterior sutures. Am J Phys Anthropol 68(1):57–66CrossRefGoogle Scholar
  46. Minagawa M, Wada E (1984) Stepwise enrichment of 15 N along food chains: further evidence and the relation between 15 N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  47. Montiel R (2001) “Estudio Diacrónico de la Variabilidad del DNA Mitocondrial en Población Catalana”. PhD thesis, Universitat Autònoma de Barcelona, Barcelona.
  48. O’Connell TC, Kneale CJ, Tasevska N, Kuhnle GGC (2012) The diet-body offset in human nitrogen isotopic values: a controlled dietary study. Am J Phys Anthropol 149:426–434CrossRefGoogle Scholar
  49. Pyankov VI, Ziegler H, Akhani H, Deigele C, Lüttge U (2010) European plants with C4 photosynthesis: geographical and taxonomic distribution and relations to climate parameters. Bot J Linn Soc 163:283–304CrossRefGoogle Scholar
  50. Richards MP, Hedges REM (1999) Stable isotope evidence for similarities in the types of marine food used by Late Mesolithic humans at sites along the Atlantic coast of Europe. J Archaeol Sci 26:717–722CrossRefGoogle Scholar
  51. Richards MP, Mays S, Fuller BT (2002) Stable carbon and nitrogen isotope values of bone and teeth reflect weaning age at the Medieval Wharram Percy site, Yorkshire, U.K. Am J Phys Anthropol 119:205–210CrossRefGoogle Scholar
  52. Rösch M, Jacomet S, Karg S (1992) The history of cereals in the region of the former Duchy of Swabia (HerzogtumSchwaben) from the Roman to the post-medieval period: results of archaeobotanical research. Veg Hist Archaeobotany 1:193–231Google Scholar
  53. Rovira N (2007) “Agricultura y gestión de los recursos vegetales en el sureste de la península ibérica durante la prehistoria reciente”. Universitat Pompeu Fabra, PhD thesis. BarcelonaGoogle Scholar
  54. Salazar-García DC, Romero A, García-Borja P, Subirà ME, Richards MP (2016) A combined dietary approach using isotope and dental buccal-microwear analysis of human remains from the Neolithic, Roman and medieval periods from the archaeological site of Tossal de les Basses (Alicante, Spain). J Archaeol Sci Rep 6:610–619Google Scholar
  55. Sampietro ML, Caramelli D, Lao O, Calafell F, Comas D, Lari M, Agusti B, Bertranpetit J, Lalueza-Fox C (2005) The genetics of the pre-Roman Iberian Peninsula: a mtDNA study of ancient Iberians. Ann Hum Genet 69:535–548CrossRefGoogle Scholar
  56. Schmid E (1972) Atlas of animal bones for prehistorians, archaeologists and quaternary geologist. Elsevier Publishing Company, AmsterdamGoogle Scholar
  57. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639CrossRefGoogle Scholar
  58. Sealy JC, Van der Merwe N, Lee-Thorpe J, Lanhan JL (1987) Nitrogen isotopic ecology in southern Africa: implications for environmental and dietary tracing. Geochim Cosmochim Acta 51:2707–2717CrossRefGoogle Scholar
  59. Silver E (1980) La determinación de la edad en los animales domésticos, Ciencia en Arqueología, Madrid, pp 289–309Google Scholar
  60. Spurr MS (1986) Arable cultivation in Roman Italy, 200 B.C.–A.D.100. Society for the Promotion of Roman Studies. J Roman Stud. Monographs, London, p 3Google Scholar
  61. Stevens RE, Germonpré M, Petrie CA, O'Connell TC (2009) Palaeoenvironmental and chronological investigations of the Magdalenian sites of Goyet Cave and Trou de Chaleux (Belgium), via stable isotope and radiocarbon analyses of horse skeletal remains. J Archaeol Sci 36(3):653–662CrossRefGoogle Scholar
  62. Sullivan A (2004) Reconstructing relationships among mortality, status, and gender at the Medieval Gilbertine Priory of St. Andrew, Fishergate, York. Am J Phys Anthropol 124(4):330–345CrossRefGoogle Scholar
  63. Tornero C, Aguilera M, Ferrio JP, Arcusa H, Moreno-García M, Garcia-Reig S, Rojo-Guerra M (2018) Vertical sheep mobility along the altitudinal gradient through stable isotope analyses in tooth molar bioapatite, meteoric water and pastures: a reference from the Ebro valley to the Central Pyrenees. Quat Int 484(10):94–106CrossRefGoogle Scholar
  64. Van der Merwe NJ, Vogel JC (1978) 13C content of human collagen as a measure of prehistoric diet in Woodland North America. Nature 276:815–816CrossRefGoogle Scholar
  65. Vives E (1990) La Població Catalana Medieval. Origen i Evolució. Eumo Editorial, VicGoogle Scholar
  66. Vogel JC, Fuls A, Ellis RP (1978) The geographical distribution of Kranz grasses. S Afr J Sci 74:209–215Google Scholar
  67. Winter K (1981) C4 plants of high biomass in arid regions in Asia: occurrence of C4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR. Oecologia 48:100–106CrossRefGoogle Scholar
  68. Wright LE, Schwarcz HP (1999) Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine: infant diets at Kaminaljuyú. J Archaeol Sci 26:1159–1170CrossRefGoogle Scholar
  69. Zeder M, Laphan HA (2010) Assessing the reliability of criteria used to identify postcranial bones in sheep, Ovis, and goats, Capra. J Archaeol Sci 37(11):2887–2905CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unitat d’Antropologia Biològica, BABVE department, Bioscience FacultyUniversitat Autònoma de BarcelonaCerdanyola del VallesSpain
  2. 2.Institut Català de Paleoecologia Humana i Evolucio Social (IPHES), C. Marcel-lí Domingo s/nCampus Sescelades URV (Edifici W3)TarragonaSpain
  3. 3.Area de PrehistòriaUniversitat Rovira i Virgili (URV)TarragonaSpain

Personalised recommendations