Archaeological and Anthropological Sciences

, Volume 11, Issue 7, pp 3299–3307 | Cite as

Dual DNA-protein extraction from human archeological remains

  • Ioana RusuEmail author
  • Ioana Paica
  • Adriana Vulpoi
  • Claudia Radu
  • Cristina Mircea
  • Cătălin Dobrinescu
  • Vitalie Bodolică
  • Beatrice Kelemen
Original Paper


Human skeletal remains may be considered bio-archives due to their particular combination of mechanical, structural, and chemical properties that render natural resistance against post-mortem degradation of ancient biomolecules. The survival of organic matter in ancient tissues is of great interest due to its potential in recovering information on the historical past of individuals and populations including health, dietary history, ancestry, and migration patterns. Even though the ancient biomolecules have become a powerful research tool, the archeogenetic research field can often deal with obstacles regarding the limited availability of osteological material and/or ethical concerns as their analysis is destructive. Here, we describe an alternative, efficient method for simultaneous extraction of DNA and proteins from the same archeological sample source, thus limiting the damage to valuable ancient human skeletal remains. The proposed method consists of overnight decalcification of powdered tissue, purification and concentration of biomolecules, and separation of the resulting solution for subsequent DNA purification and protein precipitation. Its performance was assessed relative to previously described approaches, comparing the concentration of the retrieved biomolecules. Our results show that this method designed to co-purify DNA and proteins is appropriate to obtain authentic sequences of the human mitochondrial control region from medieval or more recent human teeth. Also, the resulting proteins can be used for immunochromatographic detection of malaria in skeletal material suspect of infection with Plasmodium sp.


Ancient molecules DNA extraction Mitochondrial DNA Protein extraction Fourier transform InfraRed spectroscopy Malaria diagnosis 


Funding information

This work was supported by the Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), project number PN-II-PT-PCCA-2011-3.1-1153.

Supplementary material

12520_2018_760_MOESM1_ESM.xlsx (13 kb)
ESM 1 (XLSX 13 kb)


  1. Allentoft ME, Sikora M, Sjogren KG, Rasmussen S, Rasmussen M, Stenderup J et al (2015) Population genomics of Bronze Age Eurasia. Nature 522:167–172CrossRefGoogle Scholar
  2. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147–147CrossRefGoogle Scholar
  3. Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC (2007) Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316:280–285CrossRefGoogle Scholar
  4. Barnett R, Larson G (2012) A phenol-chloroform protocol for extracting DNA from ancient samples. Methods Mol Biol 840:13–19CrossRefGoogle Scholar
  5. Bona A, Papai Z, Maasz G, Toth GA, Jambor E, Schmidt J, Toth C, Farkas C, Mark L (2014) Mass spectrometric identification of ancient proteins as potential molecular biomarkers for a 2000-year-old osteogenic sarcoma. PLoS One 9:e87215CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  7. Buckley M, Kansa SW (2011) Collagen fingerprinting of archaeological bone and teeth remains from Domuztepe, South Eastern Turkey. Archaeol Anthropol Sci 3:271–280CrossRefGoogle Scholar
  8. Cappellini E, Collins MJ, Gilbert MT (2014) Biochemistry. Unlocking ancient protein palimpsests. Science 343:1320–1322CrossRefGoogle Scholar
  9. Cappellini E, Gilbert MT, Geuna F, Fiorentino G, Hall A, Thomas-Oates J et al (2010) A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97:205–217CrossRefGoogle Scholar
  10. Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RA, Stafford TW et al (2012) Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J Proteome Res 11:917–926CrossRefGoogle Scholar
  11. Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, Valdiosera C, Garcia N, Paabo S, Arsuaga JL, Meyer M (2013) Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A 110:15758–15763CrossRefGoogle Scholar
  12. Gabriel MN, Huffine EF, Ryan JH, Holland MM, Parsons TJ (2001) Improved MtDNA sequence analysis of forensic remains using a “mini-primer set” amplification strategy. J Forensic Sci 46:247–253CrossRefGoogle Scholar
  13. Gamba C, Hanghoj K, Gaunitz C, Alfarhan AH, Alquraishi SA, Al-Rasheid KA et al (2016) Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol Ecol Resour 16:459–469CrossRefGoogle Scholar
  14. Gilbert MT, Bandelt HJ, Hofreiter M, Barnes I (2005) Assessing ancient DNA studies. Trends Ecol Evol 20:541–544CrossRefGoogle Scholar
  15. Gilbert MT, Willerslev E, Hansen AJ, Barnes I, Rudbeck L, Lynnerup N, Cooper A (2003) Distribution patterns of postmortem damage in human mitochondrial DNA. Am J Hum Genet 72:32–47CrossRefGoogle Scholar
  16. Glocke I, Meyer M (2017) Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Res 27:1230–1237CrossRefGoogle Scholar
  17. Hagelberg E, Clegg JB (1991) Isolation and characterization of DNA from archaeological bone. Proc Biol Sci 244:45–50CrossRefGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, vol 41. [London]: Information Retrieval Ltd., c1979-c2000., pp 95–98Google Scholar
  19. Hawass Z, Gad YZ, Ismail S, Khairat R, Fathalla D, Hasan N et al (2010) Ancestry and pathology in King Tutankhamun's family. JAMA 303:638–647CrossRefGoogle Scholar
  20. Hervella M, Iniguez MG, Izagirre N, Anta A, de-la-Rua C (2015) Nondestructive methods for recovery of biological material from human teeth for DNA extraction. J Forensic Sci 60:136–141CrossRefGoogle Scholar
  21. Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S (2001) Ancient DNA. Nat Rev Genet 2:353–359CrossRefGoogle Scholar
  22. Hoss M, Paabo S (1993) DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res 21:3913–3914CrossRefGoogle Scholar
  23. Humpula JF, Ostrom PH, Gandhi H, Strahler JR, Walker AK, Stafford TW et al (2007) Investigation of the protein osteocalcin of Camelops hesternus: sequence, structure and phylogenetic implications. Geochim Cosmochim Acta 71:5956–5967CrossRefGoogle Scholar
  24. Kalmar T, Bachrati CZ, Marcsik A, Rasko I (2000) A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucleic Acids Res 28:67e–667eGoogle Scholar
  25. Kendall R, Hendy J, Collins MJ, Millard AR, Gowland RL (2016) Poor preservation of antibodies in archaeological human bone and dentine. STAR: Sci Technol Archaeol Res 2:15–24CrossRefGoogle Scholar
  26. Korlevic P, Talamo S, Meyer M (2018) A combined method for DNA analysis and radiocarbon dating from a single sample. Sci Rep 8:4127CrossRefGoogle Scholar
  27. Lancaster HO (2012) Expectations of life: a study in the demography, statistics, and history of world mortality. Springer Science & Business Media,Google Scholar
  28. Linderholm A (2016) Ancient DNA: the next generation - chapter and verse. Biol J Linn Soc 117:150–160CrossRefGoogle Scholar
  29. Marciniak S, Prowse TL, Herring DA, Klunk J, Kuch M, Duggan AT, Bondioli L, Holmes EC, Poinar HN (2016) Plasmodium falciparum malaria in 1st-2nd century CE southern Italy. Curr Biol 26:R1220–R1222CrossRefGoogle Scholar
  30. Mathieson W, Thomas GA (2013) Simultaneously extracting DNA, RNA, and protein using kits: is sample quantity or quality prejudiced? Anal Biochem 433:10–18CrossRefGoogle Scholar
  31. Meyer E, Wiese M, Bruchhaus H, Claussen M, Klein A (2000) Extraction and amplification of authentic DNA from ancient human remains. Forensic Sci Int 113:87–90CrossRefGoogle Scholar
  32. Nielsen-Marsh CM, Richards MP, Hauschka PV, Thomas-Oates JE, Trinkaus E, Pettitt PB, Karavanic I, Poinar H, Collins MJ (2005) Osteocalcin protein sequences of Neanderthals and modern primates. Proc Natl Acad Sci U S A 102:4409–4413CrossRefGoogle Scholar
  33. Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679CrossRefGoogle Scholar
  34. Pena-Llopis S, Brugarolas J (2013) Simultaneous isolation of high-quality DNA, RNA, miRNA and proteins from tissues for genomic applications. Nat Protoc 8:2240–2255CrossRefGoogle Scholar
  35. Poinar HN (2003) The top 10 list: criteria of authenticity for DNA from ancient and forensic samples. Int Congr Ser 1239:575–579CrossRefGoogle Scholar
  36. Poinar HN, Stankiewicz BA (1999) Protein preservation and DNA retrieval from ancient tissues. Proc Natl Acad Sci U S A 96:8426–8431CrossRefGoogle Scholar
  37. Rajput SK, Dave VP, Rajput A, Pandey HP, Datta TK, Singh RK (2012) A column-based rapid method for the simultaneous isolation of DNA, RNA, miRNA and proteins. Cell Biol Int 36:779–783CrossRefGoogle Scholar
  38. Rohland N, Hofreiter M (2007a) Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756–1762CrossRefGoogle Scholar
  39. Rohland N, Hofreiter M (2007b) Comparison and optimization of ancient DNA extraction. Biotechniques 42:343–352CrossRefGoogle Scholar
  40. Rohland N, Siedel H, Hofreiter M (2010) A rapid column-based ancient DNA extraction method for increased sample throughput. Mol Ecol Resour 10:677–683CrossRefGoogle Scholar
  41. Sampietro ML, Gilbert MT, Lao O, Caramelli D, Lari M, Bertranpetit J, Lalueza-Fox C (2006) Tracking down human contamination in ancient human teeth. Mol Biol Evol 23:1801–1807CrossRefGoogle Scholar
  42. Sanchez L (2001) TCA protein precipitation protocol. Pasadena, CA bjorker/Protocols/TCA_ppt_protocol.pdf. Accessed 12 December 2014Google Scholar
  43. Sawafuji R, Cappellini E, Nagaoka T, Fotakis AK, Jersie-Christensen RR, Olsen JV, Hirata K, Ueda S (2017) Proteomic profiling of archaeological human bone. R Soc Open Sci 4:161004CrossRefGoogle Scholar
  44. Schmidt-Schultz TH, Schultz M (2004) Bone protects proteins over thousands of years: extraction, analysis, and interpretation of extracellular matrix proteins in archeological skeletal remains. Am J Phys Anthropol 123:30–39CrossRefGoogle Scholar
  45. Schweitzer MH, Zheng W, Organ CL, Avci R, Suo Z, Freimark LM et al (2009) Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324:626–631CrossRefGoogle Scholar
  46. Setzer TJ (2014) Malaria detection in the field of paleopathology: a meta-analysis of the state of the art. Acta Trop 140:97–104CrossRefGoogle Scholar
  47. Shanks OC, Kornfeld M, Ream W (2004) DNA and protein recovery from washed experimental stone tools. Archaeometry 46:663–672CrossRefGoogle Scholar
  48. Tolosa JM, Schjenken JE, Civiti TD, Clifton VL, Smith R (2007) Column-based method to simultaneously extract DNA, RNA, and proteins from the same sample. Biotechniques 43:799–804CrossRefGoogle Scholar
  49. Tran TN, Aboudharam G, Raoult D, Drancourt M (2011) Beyond ancient microbial DNA: nonnucleotidic biomolecules for paleomicrobiology. Biotechniques 50:370–380CrossRefGoogle Scholar
  50. Trueman CN, Privat K, Field J (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266:160–167CrossRefGoogle Scholar
  51. van Doorn NL, Hollund H, Collins MJ (2011) A novel and non-destructive approach for ZooMS analysis: ammonium bicarbonate buffer extraction. Archaeol Anthropol Sci 3:281–289CrossRefGoogle Scholar
  52. Vorreiter F, Richter S, Peter M, Baumann S, von Bergen M, Tomm JM (2016) Comparison and optimization of methods for the simultaneous extraction of DNA, RNA, proteins, and metabolites. Anal Biochem 508:25–33CrossRefGoogle Scholar
  53. Wadsworth C, Buckley M (2014) Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Commun Mass Spectrom 28:605–615CrossRefGoogle Scholar
  54. Wadsworth C, Procopio N, Anderung C, Carretero JM, Iriarte E, Valdiosera C, Elburg R, Penkman K, Buckley M (2017) Comparing ancient DNA survival and proteome content in 69 archaeological cattle tooth and bone samples from multiple European sites. J Proteome 158:1–8CrossRefGoogle Scholar
  55. Warinner C, Hendy J, Speller C, Cappellini E, Fischer R, Trachsel C et al (2014) Direct evidence of milk consumption from ancient human dental calculus. Sci Rep 4:7104CrossRefGoogle Scholar
  56. Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S, Cappellini E, Turvey ST, Reguero M, Gelfo JN, Kramarz A, Burger J, Thomas-Oates J, Ashford DA, Ashton PD, Rowsell K, Porter DM, Kessler B, Fischer R, Baessmann C, Kaspar S, Olsen JV, Kiley P, Elliott JA, Kelstrup CD, Mullin V, Hofreiter M, Willerslev E, Hublin JJ, Orlando L, Barnes I, MacPhee RDE (2015) Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. Nature 522:81–84CrossRefGoogle Scholar
  57. Yang DY, Eng B, Waye JS, Dudar JC, Saunders SR (1998) Technical note: improved DNA extraction from ancient bones using silica-based spin columns. Am J Phys Anthropol 105:539–543CrossRefGoogle Scholar
  58. Yang DY, Watt K (2005) Contamination controls when preparing archaeological remains for ancient DNA analysis. J Archaeol Sci 32:331–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-SciencesBabeș-Bolyai UniversityCluj-NapocaRomania
  2. 2.Department of Molecular Biology and Biotechnology, Faculty of Biology and GeologyBabeș-Bolyai UniversityCluj-NapocaRomania
  3. 3.Institute of Biology Bucharest of Romanian AcademyBucharestRomania
  4. 4.Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-SciencesBabeș-Bolyai UniversityCluj-NapocaRomania
  5. 5.Faculty of History and PhilosophyBabeș-Bolyai UniversityCluj-NapocaRomania
  6. 6.Museum of National History and ArcheologyConstanțaRomania

Personalised recommendations