Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 7, pp 3329–3341 | Cite as

Investigating the provenance of Italian archaeological obsidian tools based on their magnetic properties

  • Enzo FerraraEmail author
  • Evdokia Tema
  • Elena Zanella
  • Cinzia Beatrice
  • Francesca Miola
  • Elena Pavesio
  • Andrea Perino
Original Paper
  • 69 Downloads

Abstract

Reconstructing the distribution of ancient obsidian tools is one of the few ways to trace ancient trade routes during the Neolithic. The use of magnetic properties for obsidian provenance studies has already been applied as a useful inexpensive and non-destructive tool. It is mainly based on the variation of the type, concentration and grain size of the magnetic particles within the vitreous matrix coming from different sources. In this study, we present the results of a rock magnetic investigation carried out on archaeological obsidian tools collected from six Neolithic sites situated in Northern Italy (Castello d’Annone, Brignano Frascata, Cascina Chiappona, Casalnoceto, Garbagna and Parma). A total of 57 archaeological samples were analysed by measuring several magnetic parameters such as low-field and anhysteretic susceptibility, saturation isothermal remanent magnetization at room and liquid nitrogen temperature, remanence and saturation magnetization from hysteresis cycles and anisotropy of low-field susceptibility. The obtained results were compared with the magnetic properties of geological samples from five Mediterranean islands (Lipari, Sardinia, Palmarola, Pantelleria and Melos). Cluster analysis was applied to the whole set of parameters, allowing the correlation of the pertinent group of artefacts and geological obsidians. Such analysis shows that most of the studied archaeological tools come from Lipari, with few exceptions consisting of samples coming from Pantelleria and Sardinia. Our results are in good agreement with other studies based on chemical analyses that also show that Lipari is the most common Neolithic obsidian source in Northern Italy, despite its longer distance in respect to other obsidian sources.

Keywords

Obsidian Provenance Magnetic properties Neolithic Italy 

Notes

Acknowledgements

Marica Venturino (Soprintendenza per i Beni Archeologici del Piemonte e del Museo Antichità Egizie) and Maria Bernabò Brea (Soprintendenza Archeologica dell’Emila Romagna and Museo Archeologico Nazionale di Parma) are warmly acknowledged for providing the archaeological obsidian samples and for their precious collaboration and discussion. The Editor and two anonymous reviewers are also acknowledged for their useful and constructive comments.

References

  1. Ammerman AG, Polglase C (1998) Obsidian at Neolithic sites in Northern Italy. Preistoria Alpina 34:291–296Google Scholar
  2. Bernabò Brea M, Ghiretti A, Polglase C, Visconti V (1988) I siti neolitici lungo il torrente Cinghio (Parma). Preistoria Alpina 24:103–164Google Scholar
  3. Bigazzi G, Marton P, Norelli P, Rozloznik L (1990) Fission track dating of Carpathian obsidians and provenance identification. Nucl Tracks Radiat Meas 17(3):391–396CrossRefGoogle Scholar
  4. Cann JR, Renfrew C (1964) The characterization of obsidian and its application to the Mediterranean. Region Proc Prehistoric Soc 30:111–133CrossRefGoogle Scholar
  5. Costa LJ (2007) L’obsidienne. Un témoignage d’échanges en Méditerranée préhistorique. Editions Errance, ParisGoogle Scholar
  6. Frahm E, Feinberg JM (2013) From flow to quarry: magnetic properties of obsidian and changing the scale of archaeological sourcing. J Archaeol Sci 40(10):3706–3721.  https://doi.org/10.1016/j.jas.2013.04.029 CrossRefGoogle Scholar
  7. Frahm E, Feinberg JM, Schmidt-Magee B, Wilkinson K, Gasparyan B, Yeritsyan B, Karapetian S, Meliksetian K, Muth MJ, Adler DS (2014) Sourcing geochemically identical obsidian: multiscalar magnetic variations in the Gutansar volcanic complex and implications for palaeolithic research in Armenia. J Archaeol Sci 47:164–178.  https://doi.org/10.1016/j.jas.2014.04.015 CrossRefGoogle Scholar
  8. Frahm E, Feinberg JM, Schmidt-Magee BA, Wilkinson KN, Gasparyan B, Yeritsyan B, Adler DS (2016) Middle Palaeolithic toolstone procurement behaviors at Lusakert Cave 1, Hrazdan Valley, Armenia. J Hum Evol 91:73–92CrossRefGoogle Scholar
  9. Freund KP (2018) A long-term perspective on the exploitation of Lipari obsidian in Central Mediterranean prehistory. Quat Int 468:109–120CrossRefGoogle Scholar
  10. King J, Banerjee SK, Marvin J, Ozdemir Ö (1982) A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet Sci Lett 59:404–419.  https://doi.org/10.1016/0012-821X(82)90142-X CrossRefGoogle Scholar
  11. Lanci L, Zanella E (2016) The anisotropy of magnetic susceptibility of uniaxial superparamagnetic particles: consequences for its interpretation in magnetite and maghemite bearing rocks. J Geophys Res 121(1):27–37.  https://doi.org/10.1002/2015JB012255 CrossRefGoogle Scholar
  12. Liritzis I, Laskaris N (2011) Fifty years of obsidian hydration dating in archaeology. J Non-Cryst Solids 357(10):2011–2023CrossRefGoogle Scholar
  13. Mameli V, Musinu A, Niznansky D, Peddis D, Ennas G, Ardu A, Lugliè C, Cannas C (2016) Much more than a glass: the complex magnetic and microstructural properties of obsidian. J Phys Chem C 120(48):27635–27645.  https://doi.org/10.1021/acs.jpcc.6b08387 CrossRefGoogle Scholar
  14. McDougall JM, Tarling DH, Warren SE (1983) The magnetic sourcing of obsidian samples from Mediterranean and Near Eastern sources. J Archaeol Sci 10:441–452CrossRefGoogle Scholar
  15. Poupeau G, Le Bourdonnec FX, Dubernet S, Scorzelli RB, Duttine M, Carter T (2007) Tendances actuelles dans la caractérisation des obsidiennes pour les études de provenance. ArchéoSciences 31:79–86CrossRefGoogle Scholar
  16. Quero T (2014) The Early Bronze Age site of Eia (Parma). Traces Time 4:1–5Google Scholar
  17. Renfrew C, Cann JR, Dixon JE (1965) Obsidian in the Aegean. Ann British School Athens 60:225–247CrossRefGoogle Scholar
  18. Rochette P, Gattacceca J, Devouard B, Moustard F, Bezaeva NS, Cournède C, Scaillet B (2015) Magnetic properties of tektites and other related impact glasses. Earth Planet Sci Lett 432:381–390CrossRefGoogle Scholar
  19. Scorzelli RB, Petrick S, Rossi AM, Poupeau G, Bigazzi G (2001) Obsidian archaeological artefacts provenance studies in the Western Mediterranean basin: an approach by Mossbauer spectroscopy and electron paramagnetic resonance. Comptes Rendus de l’Académie des Sciences, Série ii, Fascicule a - Sciences de la Terre et des Planètes 332(12):769–777Google Scholar
  20. Stewart SJ, Cernicchiaro G, Scorzelli RB, Poupeau G, Acquafredda P, De Francesco A (2003) Magnetic properties and 57Fe Mӧssbauer spectroscopy of Mediterranean prehistoric obsidians for provenance studies. J Non-Cryst Solids 323:188–192CrossRefGoogle Scholar
  21. Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman & Hall, LondonGoogle Scholar
  22. Thorpe OW, Warren SE, Barfield LH (1979) The sources and distribution of archaeological obsidian in Northern Italy. Preistoria Alpina 15:73–92Google Scholar
  23. Tykot RH (1996) Obsidian procurement and distribution in the Central and Western Mediterranean. J Mediterr Archaeol 9:39–82CrossRefGoogle Scholar
  24. Tykot RH (2002) Chemical fingerprinting and source tracing of obsidian: the Central Mediterranean trade in black gold. Acc Chem Res 35:618–627.  https://doi.org/10.1021/ar000208 CrossRefGoogle Scholar
  25. Urrutia Fucugauchi J (1999) Preliminary results of a rock-magnetic study of obsidians from central Mexico. Geofis Int 38:83–94Google Scholar
  26. Vásquez CA, Nami H, Rapalini A (2001) Magnetic sourcing of obsidians in southern South America: some successes and doubts. J Archaeol Sci 28:613–618CrossRefGoogle Scholar
  27. Venturino Gambari M (1988) Alessandria, loc. Cascina Chiappona. Saggio di accertamento in area di insediamento di età preistorica (tavv. XIII-XIV). Quaderni della Soprintendenza del Piemonte 7:43–53Google Scholar
  28. Venturino Gambari M (1993) Casalnoceto, loc. Cascina Cascinetta. Strutture di abitato del Neolitico medio (tavv. LXXXVIII – XC). Quaderni della Soprintendenza del Piemonte 11:195–225Google Scholar
  29. Venturino Gambari M (2004) Alla conquista dell’Appennino: le prime comunità delle valli Curone, Grue e Ossona. Omega Edizioni, TorinoGoogle Scholar
  30. Weaver I., Sternberg R., Tykot R. H. (2009). Magnetic fingerprinting of Central Mediterranean obsidian source groups. In: AGU Spring Meeting Abstracts 1, p. 4Google Scholar
  31. Zanella E, Ferrara E, Bagnasco L, Ollà A, Lanza R, Beatrice C (2012) Magnetite grain-size analysis and sourcing of Mediterranean obsidians. J Archaeol Sci 39(5):1493–1498CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Istituto Nazionale di Ricerca MetrologicaTurinItaly
  2. 2.Dipartimento di Scienze della TerraUniversità degli studi di TorinoTurinItaly
  3. 3.CIMaN-ALP Palaeomagnetic LaboratoryPeveragnoItaly

Personalised recommendations