Archaeological and Anthropological Sciences

, Volume 11, Issue 7, pp 3309–3327 | Cite as

The influence of religious identity and socio-economic status on diet over time, an example from medieval France

  • Leïa MionEmail author
  • Estelle Herrscher
  • Guy André
  • Jérôme Hernandez
  • Richard Donat
  • Magali Fabre
  • Vianney Forest
  • Domingo C. Salazar-García
Original Paper


In Southern France as in other parts of Europe, significant changes occurred in settlement patterns between the end of Antiquity and the beginning of the Middle Ages. Small communities gathered to form, by the tenth century, villages organized around a church. This development was the result of a new social and agrarian organization. Its impact on lifestyles and, more precisely, on diet is still poorly understood. The analysis of carbon and nitrogen isotopes in bone collagen from the inhabitants of the well-preserved medieval rural site Missignac-Saint Gilles le Vieux (fifth to thirteenth centuries, Gard, France) provides insight into their dietary practices and enables a discussion about its transformation over time. A sample of 152 adult individuals dated from 675 to 1175 AD (75 females, 77 males) and 75 specimens from 16 non-human species were analyzed. Results show the exploitation of freshwater, marine, and terrestrial ecosystems as well as various breeding practices specific to each species. The use of both C4 and halophyte plants for feeding domestic animals was also observed. Concerning human dietary practices, a change seemed to occur at the beginning of the tenth century with an increase of δ15N values and a decrease of δ13C values. This corresponds to the introduction of a significant amount of freshwater resources into the diet and could be related to the evolution of the Catholic doctrine. A concomitant diversification of access to individual food resources was also observed, probably linked to the increased diversity of practice inside a population otherwise perceived as one community.


High Middle Ages Christianity Carbon isotopes Nitrogen isotopes 



The authors want to thank Ian Newton (UCT) for technical support with the mass spectrometers. O. Maufras as well as the two anonymous reviewers are gratefully acknowledged for commenting and improving this manuscript. S. Cravinho is acknowledged for the determination and sampling of fish remains.

Funding information

This work has been financially supported by the Louis Bonduelle Fondation and the Nestlé France Fondation in the form of two Research Awards received by LM in 2016. The isotope analyses were financed by the Institut National de Recherches Archéologiques Préventives-Méditerranée.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12520_2018_754_MOESM1_ESM.xlsx (15 kb)
ESM 1 (XLSX 15 kb)


  1. Alexander MM, Gerrard CM, Gutiérrez A, Millard AR (2015) Diet, society, and economy in late medieval Spain: stable isotope evidence from Muslims and Christians from Gandía, Valencia. Am J Phys Anthropol 156(2):263–273Google Scholar
  2. Ambrose SH, Norr L (1993) Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert PDJB, Grupe PDG (eds) Prehistoric human bone. Springer, Berlin, pp 1–37Google Scholar
  3. Araus JL, Febrero A, Buxo R et al (1997) Changes in carbon isotope discrimination in grain cereals from different regions of the western Mediterranean Basin during the past seven millennia. Palaeoenvironmental evidence of a differential change in aridity during the late Holocene. Glob Change Biol 3(2):107–118Google Scholar
  4. Audoin-Rouzeau F (1998) Cheptel antique, cheptel médiéval: mutations ou innovations? Actes Congrès Soc Archéol Méd 6(1):30–34Google Scholar
  5. Barberan S, Maufras O, Mercier C (1996) Structures agraires aux abords de Saint-Gilles le Vieux de la préhistoire au Moyen Âge, Aimargues “Madame” (Gard). AFAN, SRA du Languedoc et du Roussillon, 98 pGoogle Scholar
  6. Bardot-Cambot A, Fabre M, Forest V (2018) Étude archéozoologique: ostéologie, conchyliologie. In: Maufras O, Hernandez J, Rochette M, Thomas B (eds) Aimargues - Madame - Saint-Gilles le Vieux. Missignac, villa médiévale et ses abords (Ve- XIIIe s.), Rapport d’opération de fouille archéologique, Tome 1, vol. 4, Inrap Méditerranée, Nîmes, pp 43–113Google Scholar
  7. Barrett JH, Richards MP (2004) Identity, gender, religion and economy: new isotope and radiocarbon evidence for marine resource intensification in early historic Orkney, Scotland, UK. Eur J Archaeol 7(3):249–271Google Scholar
  8. Bocherens H, Drucker D (2003) Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. Int J Osteoarchaeol 13(1–2):46–53Google Scholar
  9. Bocherens H, Mariotti A (2002) Paléoenvironnements et paléoalimentations: biogéochimie isotopique des vertébrés. Géologie Préhistoire Méthodes Tech Appl, Paris, pp 1323–1344Google Scholar
  10. Bocherens H, Fizet M, Mariotti A et al (1991) Isotopic biogeochemistry (13C,15N) of fossil vertebrate collagen: application to the study of a past food web including Neandertal man. J Hum Evol 20(6):481–492Google Scholar
  11. Bogaard A, Heaton THE, Poulton P, Merbach I (2007) The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. J Archaeol Sci 34(3):335–334Google Scholar
  12. Boutton TW (1991) Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. Carbon Isot Tech 1:173CrossRefGoogle Scholar
  13. Braun-Blanquet J, Roussine N, Nègre R (1952) Les groupements végétaux de la France méditerranéenne. C.N.R.S, Paris 297 pGoogle Scholar
  14. Britton K, Müldner G, Bell M (2008) Stable isotope evidence for salt-marsh grazing in the Bronze Age Severn Estuary, UK: implications for palaeodietary analysis at coastal sites. J Archaeol Sci 35(8):2111–2118Google Scholar
  15. Brown TA, Nelson DE, Vogel JS, Southon JR (1988) Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171–177Google Scholar
  16. Brůžek J, Santos F, Dutailly B, et al (2017) Validation and reliability of the sex estimation of the human os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology. Am J Phys Anthropol 164(2): 440-449Google Scholar
  17. Carlier A, Herrscher E, Hervieu P (2014) Les habitudes alimentaires à l’Époque moderne: contribution des analyses isotopiques. In: Aix en archéologie. 25 ans de découvertes. Éditions Snoeck, Gent, pp 457–459Google Scholar
  18. Colleter R, Clavel B, Pietrzak A, et al (2017) Social status in late medieval and early modern Brittany: insights from stable isotope analysis. Archaeol Anthropol Sci
  19. Craig OE, Biazzo M, O’Connell TC et al (2009) Stable isotopic evidence for diet at the Imperial Roman coastal site of Velia (1st and 2nd centuries AD) in Southern Italy. Am J Phys Anthropol 139(4):572–583Google Scholar
  20. Craig OE, Bondioli L, Fattore L, Higham T, Hedges R (2013) Evaluating marine diets through radiocarbon dating and stable isotope analysis of victims of the AD79 eruption of vesuvius. Am J Phys Anthropol 152(3):345–352Google Scholar
  21. Cravinho S (2018) Etude de l'ichtyofaune. In: Maufras O, Hernandez J, Rochette M, Thomas B (eds) Aimargues - Madame - Saint-Gilles le Vieux. Missignac, villa médiévale et ses abords (Ve- XIIIe s.), Rapport d’opération de fouille archéologique, Tome 1, vol. 4, Inrap Méditerranée, Nîmes, pp 114–131Google Scholar
  22. Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes J-C (eds) Handbook of environmental isotope geochemistry. Elsevier Publishing Company, Amsterdam, pp 329–406Google Scholar
  23. Deniro MJ (1985) Stable isotopy and archaeology. Am Sci 75(2):182–191Google Scholar
  24. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42(5):495–506Google Scholar
  25. Deniro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45(10):341–351Google Scholar
  26. Donat R, Duchesne S (2018) Les habitants de Missignac. In: Maufras O, Hernandez J, Rochette M, Thomas B (eds) Aimargues - Madame - Saint-Gilles le Vieux. Missignac, villa médiévale et ses abords (Ve- XIIIe s.), Rapport d’opération de fouille archéologique, Tome 1, vol. 3, Inrap Méditerranée, Nîmes, pp 119–168Google Scholar
  27. Dufour E, Bocherens H, Mariotti A (1999) Palaeodietary implications of isotopic variability in Eurasian lacustrine fish. J Archaeol Sci 26(6):617–627Google Scholar
  28. Durand A (2014) The transformation of riversides: the example of the alluvial valleys of Languedoc and the lower Rhône Valley during the medieval period (9th–13th centuries). In: Retamero F, Schjellerup I, Davies A (eds) Agricultural and pastoral landscapes in pre-industrial cociety: Choices, stability and change. Oxbow Books, Oxford, pp 79–92Google Scholar
  29. Durand A, Ruas M-P (2004) La forêt languedocienne (fin VIIIe siècle-XIe siècle). In: Corvol-Dessert A (ed) Les Forêts d’Occident du Moyen Âge à nos jours: actes des XXIVes Journées Internationales d’Histoire de l’Abbaye de Flaran, 6 - 8 sept. 2002. Flaran - Presses Universitaire du Mirail, Toulouse, pp 163–180Google Scholar
  30. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40(1):503–537Google Scholar
  31. Feller L (2017) Paysans et seigneurs au Moyen Âge: VIIIe-XVe siècles, 2e édition. Armand Colin, Malakoff. 312 pGoogle Scholar
  32. Fernandes R, Nadeau M-J, Grootes PM (2012) Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol Anthropol Sci 4(4):291–301Google Scholar
  33. Fraser RA, Bogaard A, Heaton T, Charles M, Jones G, Christensen BT, Halstead P, Merbach I, Poulton PR, Sparkes D, Styring AK (2011) Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. J Archaeol Sci 38(10):2790–2804Google Scholar
  34. Froehle AW, Kellner CM, Schoeninger MJ (2010) FOCUS: effect of diet and protein source on carbon stable isotope ratios in collagen: follow up to. J Archaeol Sci 37(10):2662–2670Google Scholar
  35. Fuller BT, Fuller JL, Sage NE, Harris DA, O’Connell TC, Hedges REM (2004) Nitrogen balance and δ15N: why you’re not what you eat during pregnancy. Rapid Commun Mass Spectrom 18(23):2889–2896Google Scholar
  36. Fuller BT, Fuller JL, Sage NE, Harris DA, O’Connell TC, Hedges REM (2005) Nitrogen balance and δ15N: why you’re not what you eat during nutritional stress. Rapid Commun Mass Spectrom 19(18):2497–2506Google Scholar
  37. Fuller BT, Müldner G, Neer WV et al (2012) Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD). J Anal At Spectrom 27(5):807–820Google Scholar
  38. Gautier A (2010) Manger de la viande, signe extérieur de richesse? Le cas des îles Britanniques. In: Devroey J-P, Feller L, Le Jan R (eds) Les élites et la richesse au Haut Moyen Âge. Brepols, Turnhout, pp 285–303CrossRefGoogle Scholar
  39. Géhu JM, Biondi E, Géhu-Franck J, Costa M (1992) Interprétation phytosociologique actualisée de quelques végétations psammophiles et halophiles de Camargue. Colloq Phytosociol 19:103–131Google Scholar
  40. Guede I, Ortega LA, Zuluaga MC, et al (2018) Isotopic evidence for the reconstruction of diet and mobility during village formation in the Early Middle Ages: Las Gobas (Burgos, northern Spain). Archaeol Anthropol Sci 10(8): 2047–2058Google Scholar
  41. Häberle S, Fuller BT, Nehlich O et al (2016) Inter- and intraspecies variability in stable isotope ratio values of archaeological freshwater fish remains from Switzerland (11th–19th centuries AD). Environ Archaeol 21(2):119–132Google Scholar
  42. Hakenbeck S, McManus E, Geisler H, Grupe G, O’Connell T (2010) Diet and mobility in early medieval Bavaria: a study of carbon and nitrogen stable isotopes. Am J Phys Anthropol 143(2):235–249Google Scholar
  43. Hamilton J, Thomas R (2012) Pannage, pulses and pigs: isotopic and zooarchaeological evidence for changing pig management practices in later medieval England. Mediev Archaeol 56(1):234–259Google Scholar
  44. Hammond C, O’Connor T (2013) Pig diet in medieval York: carbon and nitrogen stable isotopes. Archaeol Anthropol Sci 5(2):123–127Google Scholar
  45. Heaton THE (1999) Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. J Archaeol Sci 26(6):637–649Google Scholar
  46. Hernandez J (2018) Les ensembles funéraires de Missignac à travers le temps. In: Maufras O, Hernandez J, Rochette M, Thomas B (eds) Aimargues - Madame - Saint-Gilles le Vieux. Missignac, villa médiévale et ses abords (Ve- XIIIe s.), Rapport d’opération de fouille archéologique, Tome 1, vol. 3, Inrap Méditerranée, Nîmes, pp 7–111Google Scholar
  47. Herrscher E, Goude G (2015) Biogéochimie isotopique et anthropologie biologique: reconstitution des modes de vie du passé. In: Balasse M, Dauphin Y, Brugal J-P et al (eds) Messages d’Os Archéométrie du squelette animal et humain. Éditions des archives contemporaines, Paris, pp 359–375Google Scholar
  48. Iacumin P, Galli E, Cavalli F, Cecere L (2014) C4-consumers in Southern Europe: the case of friuli V.G. (NE-Italy) during early and central Middle Ages. Am J Phys Anthropol 154(4):561–574Google Scholar
  49. Jalut G, Esteban Amat A, Bonnet L, Gauquelin T, Fontugne M (2000) Holocene climatic changes in the Western Mediterranean, from South-East France to South-East Spain. Palaeogeogr Palaeoclimatol Palaeoecol 160(3):255–290Google Scholar
  50. Katzenberg MA, Lovell NC (1999) Stable isotope variation in pathological bone. Int J Osteoarchaeol 9(6):316–324Google Scholar
  51. Katzenberg MA, Weber A (1999) Stable isotope ecology and palaeodiet in the Lake Baikal region of Siberia. J Archaeol Sci 26:651–659CrossRefGoogle Scholar
  52. Kaupová S, Velemínský P, Herrscher E et al (2016) Diet in transitory society: isotopic analysis of medieval population of Central Europe (ninth–eleventh century AD, Czech Republic). Archaeol Anthropol Sci 10(4):923–942Google Scholar
  53. Kaupová S, Velemínský P, Stránská P, et al (2018) Dukes, elites, and commoners: dietary reconstruction of the early medieval population of Bohemia (9th–11th century AD, Czech Republic). Archaeol Anthropol Sci.
  54. Keenleyside A, Schwarcz H, Stirling L, Ben Lazreg N (2009) Stable isotopic evidence for diet in a Roman and Late Roman population from Leptiminus, Tunisia. J Archaeol Sci 36(1):51–63Google Scholar
  55. Krajcarz MT, Krajcarz M, Bocherens H (2018) Collagen-to-collagen prey-predator isotopic enrichment (Δ13C, Δ15N) in terrestrial mammals—a case study of a subfossil red fox den. Palaeogeogr Palaeoclimatol Palaeoecol 490:563–570CrossRefGoogle Scholar
  56. Le Roy LE (2004) Histoire humaine et comparée du climat; I. Canicules et glaciers (XIIIe - XVIIIe siècle). Fayard, Paris. 380 pGoogle Scholar
  57. Lightfoot E, Šlaus M, O’Connell T c. (2012) Changing cultures, changing cuisines: cultural transitions and dietary change in Iron Age, Roman, and early medieval Croatia. Am J Phys Anthropol 148(4):543–556Google Scholar
  58. Longin R (1971) New method of collagen extraction for radiocarbon dating. Nature 230:241–242CrossRefGoogle Scholar
  59. López-Costas O, Müldner G (2016) Fringes of the empire: diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am J Phys Anthropol 161(1):141–154Google Scholar
  60. Makarewicz C, Tuross N (2006) Foddering by Mongolian pastoralists is recorded in the stable carbon (δ13C) and nitrogen (δ15N) isotopes of caprine dentinal collagen. J Archaeol Sci 33(6):862–870Google Scholar
  61. Maufras O (2015) Aperçu des villae médiévales de la Vistrenque à Nîmes (Gard): répartition, formes et héritage antique. In: Villae and Domain at the end of Antiquity and the beginning of Middle Ages. Université de Pau et des pays de l’Adour, Pau, pp 63–82Google Scholar
  62. Maufras O, Mercier C (2002) Habitat et terroir du IVe au XIIe s. à Saint-Gilles-le-Vieux (Aimargues, Gard). In: Archéologie du TGV Méditerranée. Fiche de Syntèse, tome 3. Antiquité, Moyen âge, Epoque moderne. Association pour la Recherche Archéologique en Languedoc Oriental, Lattes, pp 945–972Google Scholar
  63. Maufras O, Mercier C (2006) Habitat et terroir du IVe au XIIe siècle à Saint-Gilles le Vieux (Aimargues, Gard). In: Maufras O (ed) Habitats, nécropoles et paysages dans la moyenne et la basse vallée du Rhône (VIIe - XVe s.): contribution des travaux du TGV-Méditerranée à l’étude des sociétés rurales médiévales. Éd. de la Maison des Sciences de l’Homme, Paris, pp 137–159Google Scholar
  64. Maufras O, Ott M, Raynaud C et al (2014) Villæ - Villages du haut Moyen Âge en plaine du Languedoc oriental: maillage, morphologie et économie. Archéopages 40:92–103CrossRefGoogle Scholar
  65. Maufras O, Hernandez J, Rochette M, Thomas B (in press) Genèse, évolution et désertion de Missignac (Aimargues, Gard), villa des Ve-XIIIe siècles. Archéologie du Midi MédiévalGoogle Scholar
  66. Médail F (1994) Liste des habitats naturels retenus dans la directive 92/43/CEE du 21 mai 1992, présents en région méditerranéenne française (régions Provence-Alpes-Côte d’Azur, Languedoc-Roussillon et Corse), 53pGoogle Scholar
  67. Mekota A-M, Grupe G, Ufer S, Cuntz U (2006) Serial analysis of stable nitrogen and carbon isotopes in hair: monitoring starvation and recovery phases of patients suffering from anorexia nervosa. Rapid Commun Mass Spectrom 20(10):1604–1610Google Scholar
  68. Miclon V, Gaultier M, Genies C, et al (2017) Social characterization of the medieval and modern population from Joué-lès-Tours (France): contribution of oral health and diet. BMSAP
  69. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48(5):1135–1140Google Scholar
  70. Mion L, Herrscher E, Blondiaux J, Binet E, Andre G (2016) Comportements alimentaires en Gaule du Nord: étude isotopique du site de l’Îlot de la Boucherie (IIIe–Ve siècles apr. J.-C.) à Amiens. BMSAP 28(3–4):155–175Google Scholar
  71. Montanari M (1995) La faim et l’abondance: histoire de l’alimentation en Europe. Seuil, Paris. 288 pGoogle Scholar
  72. Montanari M (2008) Romains, Barbares, Chrétiens: à l’aube de la culture alimentaire européenne. In: Flandrin J-L, Montanari M (eds) Histoire de l’alimentation, 2ème édition. Fayard, Paris, pp 279–282Google Scholar
  73. Montanari M (2017) La chère et l’esprit. Alma Editeur. Milan. 287 pGoogle Scholar
  74. Müldner G (2009) Chapter 16: Investigating medieval diet and society by stable isotope analysis of human bone. In: Gilchrist R, Reynolds A (eds) Reflections: 50 years of medieval archaeology, 1957-2007. Routledge, London, pp 327–246Google Scholar
  75. Müldner G, Richards MP (2007) Stable isotope evidence for 1500 years of human diet at the city of York, UK. Am J Phys Anthropol 133(1):682–697Google Scholar
  76. Müldner G, Britton K, Ervynck A (2014) Inferring animal husbandry strategies in coastal zones through stable isotope analysis: new evidence from the Flemish coastal plain (Belgium, 1st–15th century AD). J Archaeol Sci 41:322–332Google Scholar
  77. Murail P, Bruzek J, Houët F, Cunha E (2005) DSP: a tool for probabilistic sex diagnosis using worldwide variability in hip-bone measurements. BMSAP 17(3–4):167–176Google Scholar
  78. O’Connell TC, Kneale CJ, Tasevska N, Kuhnle GGC (2012) The diet-body offset in human nitrogen isotopic values: a controlled dietary study. Am J Phys Anthropol 149(3):426–434Google Scholar
  79. Olsen KC, White CD, Longstaffe FJ, von Heyking K, McGlynn G, Grupe G, Rühli FJ (2014) The effects of pathology on intra-skeletal isotopic compositions (δ13C, δ15N) of bone collagen. Am J Phys Anthropol 153(4):598–604Google Scholar
  80. Olsen KC, White CD, Longstaffe FJ, Rühli FJ, Warinner C, Salazar-García DC (2018) Isotopic anthropology of rural German medieval diet: intra- and inter-population variability. Archaeol Anthropol Sci 10(5): 1053–1065Google Scholar
  81. Pennycook CG (2008) A stable isotope reconstruction of Byzantine and Frankish Greek diet in the valley of Stymphalos. Thesis for the degree Master of Arts in Anthropology, University of Alberta, 214 pGoogle Scholar
  82. Pradat B (2018) Etude carpologique. In: Maufras O, Hernandez J, Rochette M, Thomas B (eds) Aimargues - Madame - Saint-Gilles le Vieux. Missignac, villa médiévale et ses abords (Ve- XIIIe s.), Rapport d’opération de fouille archéologique, Tome 1, vol. 4, Inrap Méditerranée, Nîmes, pp 205–214Google Scholar
  83. Reitsema LJ, Vercellotti G (2012) Stable isotope evidence for sex- and status-based variations in diet and life history at medieval Trino Vercellese, Italy. Am J Phys Anthropol 148(4):589–600Google Scholar
  84. Richards MP, Hedges REM (1999) A Neolithic revolution? New evidence of diet in the British Neolithic. Antiquity 73(282):891–897Google Scholar
  85. Salamon M, Coppa A, McCormick M, Rubini M, Vargiu R, Tuross N (2008) The consilience of historical and isotopic approaches in reconstructing the medieval Mediterranean diet. J Archaeol Sci 35(6):1667–1672Google Scholar
  86. Salazar-García DC, Richards MP, Nehlich O, Henry AG (2014a) Dental calculus is not equivalent to bone collagen for isotope analysis: a comparison between carbon and nitrogen stable isotope analysis of bulk dental calculus, bone and dentine collagen from same individuals from the medieval site of El Raval (Alicante, Spain). J Archaeol Sci 47:70–77CrossRefGoogle Scholar
  87. Salazar-García DC, Aura JE, Olària CR, Talamo S, Morales JV, Richards MP (2014b) Isotope evidence for the use of marine resources in the eastern Iberian Mesolithic. J Archaeol Sci 42:231–240CrossRefGoogle Scholar
  88. Salazar-García DC, Romero A, García-Borja P, Subirà ME, Richards MP (2016) A combined dietary approach using isotope and dental buccal-microwear analysis of human remains from the Neolithic, Roman and medieval periods from the archaeological site of Tossal de les Basses (Alicante, Spain). J Archaeol Sci Rep 6:610–619Google Scholar
  89. Schmitt A (2005) Une nouvelle méthode pour estimer l’âge au décès des adultes à partir de la surface sacro-pelvienne iliaque. BMSAP 17(1–2):89–101Google Scholar
  90. Schneider L (2010) Castra, vicariae et circonscriptions intermédiaires du haut Moyen Age méridional (IXe - Xe siècle): Le cas de la Septimanie-Gothie. In: Boisseuil D, Chastang P, Feller L, Morsel J (eds) Ecritures de l’espace social. Mélanges d’histoire médiévale offerts à Monique Bourin. Publications de la Sorbonne, Paris, pp 237–266CrossRefGoogle Scholar
  91. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48(4):625–639Google Scholar
  92. Sealy J, Johnson M, Richards M, Nehlich O (2014) Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. J Archaeol Sci 47:64–69CrossRefGoogle Scholar
  93. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47(3):380–384Google Scholar
  94. Sponheimer M, Robinson T, Ayliffe L, Roeder B, Hammer J, Passey B, West A, Cerling T, Dearing D, Ehleringer J (2003) Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled feeding study. Int J Osteoarchaeol 13(1–2):80–87Google Scholar
  95. Szpak P (2011) Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J Archaeol Sci 38(8):3358–3372Google Scholar
  96. Tieszen LL (1991) Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J Archaeol Sci 18(3):227–248Google Scholar
  97. Treffort C (1996) Du cimiterium christianorum au cimetière paroissial: évolution des espaces funéraires en Gaule du VIe au Xe siècle. Suppl Rev Archéol Cent Fr 11:55–63Google Scholar
  98. Treffort C (2006) Des tombes et des hommes: trente ans d’archéologie funéraire en France. Doss Archéol 314:60–63Google Scholar
  99. van Klinken GJ (1999) Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J Archaeol Sci 26(6):687–695Google Scholar
  100. Vernet J-L, Pachiaudi C, Bazile F et al (1996) Le δ13C de charbons de bois préhistoriques et historiques méditérranéens, de 35 000 BP à l’actuel. Premiers résultats. Comptes Rendus Acad Sci Sér 2 Sci Terre Plan 323(4):319–324Google Scholar
  101. Virginia RA, Delwiche CC (1982) Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia 54(3):317–325Google Scholar
  102. Owings Webb PA, Suchey JM (1985) Epiphyseal union of the anterior iliac crest and medial clavicle in a modern multiracial sample of American males and females. Am J Phys Anthropol 68(4):457–466Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, Minist CultureLAMPEAAix-en-ProvenceFrance
  2. 2.Institut National de Recherches Archéologiques Préventives (INRAP)NîmesFrance
  3. 3.UMR 5140, Archéologie des Sociétés MéditerranéennesMontpellier-LattesFrance
  4. 4.AMIS, CNRS, UMR 5288Université Paul SabatierToulouseFrance
  5. 5.TRACES, UMR 5068ToulouseFrance
  6. 6.Grupo de Investigación en Prehistoria IT-622-13 (UPV-EHU)/IKERBASQUE-Basque Foundation for ScienceVitoriaSpain
  7. 7.Department of Geological SciencesUniversity of Cape TownCape TownSouth Africa

Personalised recommendations