Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 7, pp 3187–3199 | Cite as

Striped hyenas as bone modifiers in dual human-to-carnivore experimental models

  • Mari Carmen ArriazaEmail author
  • Elia Organista
  • José Yravedra
  • Manuel Santonja
  • Enrique Baquedano
  • Manuel Domínguez-Rodrigo
Original Paper

Abstract

Taphonomic studies, along with modern analogs arisen from experimentation, have been developed to discern the agents responsible for bone accumulations. A special focus has been given to carnivores, which may produce bone accumulations or interact with hominins by ravaging bones from archaeological sites. Although a great effort has been made to study several carnivore species (namely, felids, hyenids and canids), a limited knowledge concerning some scavenging species such as the striped hyena (Hyaena hyaena) remains. The present study shows the results of an experiment carried out at Olduvai Gorge (Ngorongoro Conservation Area, Tanzania) which aimed at assessing the impact of striped hyenas on a goat carcass. After human butchering, the goat carcass was deposited in an area near the FLK North site, where nocturnal carnivores are very active. The orientation and arrangement of the bone assemblage were documented daily and recorded with the aid of photogrammetric techniques. The behaviour of the carnivores acting on the carcasses was recorded by a motion camera picture. The only carnivore involved in the modification of the bone assemblage was the striped hyena. The results show that the post-ravaging behaviour of this species is similar to that previously documented for the spotted hyena (Crocuta crocuta). Oddly, after one night of carnivore ravaging, the experimental sample showed anisotropy. The carnivore ravaging carried out by the striped hyena modified the orientation pattern of the simulated archaeological site. Thus, carnivore ravaging may also impact the spatial orientation pattern of archaeological sites.

Keywords

Striped hyena Post-ravaging Orientation Olduvai Bed I 

Notes

Acknowledgements

We wish to thank the Ngorongoro Conservation Area Authorities, COSTECH and the antiquities unit for permits to conduct research at Olduvai and Museo Arqueológico Regional de la Comunidad de Madrid. The support of the DST-NRF Centre of Excellence in Palaeosciences (CoE-Pal) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the CoE. We would like to express our appreciation and acknowledgement to the following: Julius Sulley, Lazaro Sarwatt, Yacob Matle, Yona Thomas, Thomas Madangi, Nicolaus Dohho, Caroli Maole, Francis Fabiano, Sangau Letuma, Nicodemus Burra, Ibrahim Mathias and Shabany Bakari. MCA is thankful to Julia Aramendi and Dominic Stratford for their help in editing this paper.

Funding information

This work received major funding provided by the Spanish Ministry of Science and Innovation through the European project I + D HAR2013-45246-C3-1P and the Spanish Ministry of Culture through the Heritage Institute and the Program of Funding for Archaeological Projects Abroad.

References

  1. Andrews P (2008) Cetaceans from a possible striped hyaena Den Site in Qatar. J Taphonomy 6(3–4):255–274Google Scholar
  2. Aramendi J, Uribelarrea D, Arriaza MC, Arráiz H, Barboni D, Yravedra J, Ortega MC, Gidna A, Mabulla M, Baquedano E, Domínguez-Rodrigo M (2017) The paleoecology and taphonomy of AMK (Bed I, Olduvai Gorge) and its contributions to the understanding of the “Zinj” paleolandscape. Palaeogeogr Palaeoclimatol Palaeoecol 488:35–49CrossRefGoogle Scholar
  3. Arraiz H, Barboni D, Ashley GM, Mabulla A, Baquedano E, Dominguez-Rodrigo M (2017) The FLK Zinj paleolandscape: reconstruction of a 1.84 Ma wooded habitat in the FLK Zinj-AMK-PTK-DS archaeological complex, Middle Bed I (Olduvai Gorge, Tanzania). Palaeogeogr Palaeoclimatol Palaeoecol 488:9–20CrossRefGoogle Scholar
  4. Arriaza MC, Domínguez-Rodrigo M (2016) When felids and hominins ruled at Olduvai Gorge: a machine learning analysis of the skeletal profiles of the non-anthropogenic Bed I sites. Quat Sci Rev 139:43–52CrossRefGoogle Scholar
  5. Arriaza M, Domínguez-Rodrigo M, Martínez-Maza C, Mabulla A, Baquedano E (2015) Differential predation by age and sex classes in blue wildebeest in Serengeti: study of a modern carnivore Den in Olduvai Gorge (Tanzania). PLoS One 10(5):e0125944CrossRefGoogle Scholar
  6. Arriaza MC, Domínguez-Rodrigo M, Yravedra J, Baquedano E (2016) Lions as bone accumulators? Paleontological and ecological implications of a modern bone assemblage from Olduvai Gorge. PLoS One 11(5):e0153797CrossRefGoogle Scholar
  7. Arriaza MC, Yravedra J, Domínguez-Rodrigo M, Mate-González MA, García Vargas E, Palomeque-González JF, Aramendi J, González-Aguilera D, Baquedano E (2017) On applications of micro-photogrammetry and geometric morphometrics to studies of tooth mark morphology: the modern Olduvai Carnivore Site (Tanzania). Palaeogeogr Palaeoclimatol Palaeoecol 488:103–112CrossRefGoogle Scholar
  8. Bearder SK (1977) Feeding habits of spotted hyaenas in a woodland habitat. E Afr Wildl J 15:263–280CrossRefGoogle Scholar
  9. Benito-Calvo A, de la Torre I (2011) Analysis of orientation patterns in Olduvai Bed I assemblages using GIS techniques: implications for site formation processes. J Hum Evol 61:50–60CrossRefGoogle Scholar
  10. Binford LR (1981) Bones ancient men and modern myths. New York Academic Press, New YorkGoogle Scholar
  11. Binford LR, Mills LGL, Stone NM (1988) Hyena scavenging behavior and its implications for the interpretation of faunal assemblages from FLK 22 (the Zinj floor) at Olduvai Gorge. J Anthropol Archaeol l7:99–135CrossRefGoogle Scholar
  12. Blumenschine RJ (1986) Early hominid scavenging opportunities. Implications of carcass availability in the Serengeti and Ngorongoro ecosystems. B.A.R. International Series, 283, OxfordGoogle Scholar
  13. Blumenschine RJ (1988) An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. J Archaeol Sci 15:483–502CrossRefGoogle Scholar
  14. Blumenschine RJ (1995) Percussion marks, tooth marks and the experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J Hum Evol 29:21–51CrossRefGoogle Scholar
  15. Blumenschine RJ, Marean CW, Capaldo SD (1996) Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. J Archaeol Sci 23:493–507CrossRefGoogle Scholar
  16. Brain CK (1967) Hottentot food remains and their bearing on the interpretation of fossil bone assemblages. Scientific papers of the Namib Desert Research Station 32:1–11Google Scholar
  17. Brain CK (1969) The contribution of Namib Desert Hottentots to an understanding of Australopithecine bone accumulations. Scientific papers of the Namib Desert Research Station 39:13–22Google Scholar
  18. Brain CK (1981) The hunters or the hunted? An introduction to African cave taphonomy. Chicago University Press, ChicagoGoogle Scholar
  19. Brugal JP, Fosse P (eds) (2004) Hommes et Carnivores au Paléolithique—Hommage à Philippe Morel. Rev Paléobiol, Genève 23(2):567–932 (Actes du Symposium 3.3- UISPP Liége 2001, J.P.Brugal et P.Fosse (org.))Google Scholar
  20. Bunn HT (1982) Meat-eating and human evolution: studies on the diet and subsistence patterns of Plio-Pleistocene hominids in East Africa. Ph.D. Dissertation. University of California, BerkeleyGoogle Scholar
  21. Bunn HT (1983) Comparative analysis of modern bone assemblages from a San huntergatherer camp in the Kalahari Desert, Botswana, and from a spotted hyena den near Nairobi, Kenya. In: Clutton-Brock J, Grigson C (eds) Animals and archaeology. Volume I: hunters and their prey. BAR International Series 283. British Archaeological Reports, Oxford, pp 143–148Google Scholar
  22. Bunn HT, Pickering TR (2010) Bovid mortality profiles in paleoecological context falsify hypotheses of endurance running-hunting and passive scavenging by early Pleistocene hominins. Quat Res 74:395–404CrossRefGoogle Scholar
  23. Cleghorn N, Marean CW (2007) The destruction of skeletal elements by carnivores: the growth of a general model for skeletal element destruction and survival in zooarchaeological assemblages. In: Pickering TR, Schick K, Toth N (eds) Breathing Life into Fossils: Taphonomic Studies in Honor of C.K. (Bob) Brain. Stone Age Institute Press, Bloomington, pp 38–66Google Scholar
  24. Dart R (1957) The osteodontokeratic culture of Australopithecus prometheus. Trans Mus Mem 10:1–105Google Scholar
  25. Domínguez-Rodrigo M (1994a) Dinámica trófica, estrategias de consumo y alteraciones óseas en la sabana africana: resumen de un proyecto de investigación etoarqueológico (1991–1993). Trab Prehist 51:15–37CrossRefGoogle Scholar
  26. Domínguez-Rodrigo M (1994b) El Origen del Comportamiento Humano. Tipo, MadridGoogle Scholar
  27. Domínguez-Rodrigo M (1999) Flesh availability and bone modification in carcasses consumed by lions. Palaeogeogr Palaeoclimatol Palaeoecol 149:373–388CrossRefGoogle Scholar
  28. Domínguez-Rodrigo M, Barba R (2006) New estimates of tooth marks and percussion marks from FLK Zinj, Olduvai Gorge (Tanzania): the carnivore-hominid-carnivore hypothesis falsified. J Hum Evol 50:170–194CrossRefGoogle Scholar
  29. Domínguez-Rodrigo M, García-Pérez A (2013) Testing the accuracy of different A-axis types for measuring the orientation of bones in the archaeological and paleontological record. PLoS One 8(7):e68955CrossRefGoogle Scholar
  30. Domínguez-Rodrigo M, Barba R, Egeland CP (2007a) Deconstructing Olduvai. A taphonomic study of the Bed I sites, Springer Books, DordrechtGoogle Scholar
  31. Domínguez-Rodrigo M, Egeland CP, Pickering TR (2007b) Equifinality in carnivore tooth marks and the extended concept of archaeological palimpsests: implications for models of passive scavenging by hominids. In: Pickering TR, Schick K, Toth N (eds) Breathing life into fossils: taphonomic studies in honor of C.K. (Bob) Brain. Stone Age Institute Press, Bloomington, pp 255–267Google Scholar
  32. Domínguez-Rodrigo M, Bunn HT, Mabulla A, Ashley GM, Diez-Martín F, Barba R, Baquedano E (2010) Disentangling hominin and carnivore activities near a spring at FLK North (Olduvai Gorge, Tanzania). Quat Res 74:363–375CrossRefGoogle Scholar
  33. Domínguez-Rodrigo M, Bunn HT, Pickering TR, Mabulla A, Musiba CM, Baquedano E, Ashley GM, Diez-Martin F, Santonja M, Uribelarrea D, Barba R, Yravedra J, Barboni D, Arriaza MC, Gidna A (2012) Autochthony and orientation patterns in Olduvai Bed I: a re-examination of the status of post-depositional biasing of archaeological assemblages from FLK North (FLKN). J Archaeol Sci 39(7):2116–2127CrossRefGoogle Scholar
  34. Egeland A, Egeland CP, Bunn HT (2008) Taphonomic analysis of a modern spotted hyena (Crocuta crocuta) den from Nairobi, Kenya. J Taphonomy 6:275–299Google Scholar
  35. Fosse P, Avery G, Fourvel JB, Lesur-Gebremariam J, Monchot H, Brugal JP, Kolska Horwitz L, Tournepiche JF (2010) Los cubiles actuales de hiena: sintesis criteria de sus caracteristicas tafonomicas a partir de la excavacion de nuevos yacimientos (Republica de Djibuti, Africa del Sur) y la informacion publicada. In: Rosell J, Baquedano E (eds) Actas de la Primera Reunion de cientificos sobre cubiles de hiena (y otros grandes carnivoros) en los yacimientos arqueologicos de la Peninsula Iberica. Alcala de Henares, Madrid, pp 108–117Google Scholar
  36. Fourvel JP, Fosse P, Avery G (2015) Spotted, striped or brown? Taphonomic studies at dens of extant hyaenas in eastern and southern Africa. Quat Int 369:38–50CrossRefGoogle Scholar
  37. Fyumagwa D, Wiik H (2001) TAWRI Wildlife veterinary programme Annual reportGoogle Scholar
  38. Gidna A, Yravedra J, Domínguez-Rodrigo M (2013) A cautionary note on the use of captive carnivores tomodel wild predator behavior: a comparison of long bone modification patterns by lions. J Archaeol Sci 40:1903–1910CrossRefGoogle Scholar
  39. Hatt RT (1959) The mammals of Iraq, vol 106. Miscellaneous Publications Museum of Zoology, University of Michigan, Ann Arbor, pp 1–113Google Scholar
  40. Haynes G (1983) A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9:164–172CrossRefGoogle Scholar
  41. Henschel JR, Tilson R, von Blottnitz F (1979) Implications of a spotted hyena bone assemblage in the Namib Desert. S Afr Archaeol Bull 34:127–l31CrossRefGoogle Scholar
  42. Hill A (1983) Hyenas and early hominids. In: Clutton-Brock J, Grigson C (eds) Animals and archaeology. Volume I: hunters and their prey. BAR International Series 283. British Archaeological Reports, Oxford, pp 87–92Google Scholar
  43. Hill A (1984) Hyaenas and hominids: taphonomy and hypothesis testing. In: Foley R (ed) Hominid evolution and community ecology. Academic, London, pp 111–128Google Scholar
  44. Hughes AR (1954) Habits of hyenas. S Afr J Sci 51:156–158Google Scholar
  45. Kerbis-Peterhans JC (1990) The role of porcupines, leopards and hyenas in ungulate carcass dispersal: implications for paleoanthropology. Ph.D. Dissertation. University of Chicago, ChicagoGoogle Scholar
  46. Krajcarz M, Krajcarz MT (2014) The red fox (Vulpes vulpes) as an accumulator of bones in cave-like environments. Int J Osteoarchaeol 24:459–475CrossRefGoogle Scholar
  47. Kruuk H (1972) The spotted hyena: a study of predation and social behavior. Chicago University Press, ChicagoGoogle Scholar
  48. Kruuk H (1976) Feeding and social behaviour of the striped hyaena (Hyaena vulgaris Desmaret). E Afr Wildl J 14:91–111CrossRefGoogle Scholar
  49. Kuhn BF (2005) The faunal assemblages and taphonomic signatures of five striped hyaena (Hyaena hyaena syriaca) dens in the desert of Eastern Jordan. Levant 37:221–234CrossRefGoogle Scholar
  50. Lam YM (1992) Variability in the behaviour of spotted hyaenas as taphonomic agents. J Archaeol Sci 19:389–406CrossRefGoogle Scholar
  51. Lansing SW, Cooper SM, Boydston EE, Holekamp KE (2009) Taphonomic and ooarchaeological implications of spotted hyena (Crocuta crocuta) bone accumulations in Kenya: a modern behavioral ecological approach. Paleobiology 35(2):289–309CrossRefGoogle Scholar
  52. Lydekkerr R (1907) The game animals of India, Burma, Malaya and Tibet. Rowland Ward, LondonGoogle Scholar
  53. Marean CW (1991) Measuring the post-depostional destruction of bone archaeological assemblages. J Archaeol Sci 18:677–694CrossRefGoogle Scholar
  54. Marean CW, Bertino L (1994) Intrasite spatial analysis of bone: subtracting the effect of secondary carnivore consumers. Am Antiq 59:748–768CrossRefGoogle Scholar
  55. Marean CW, Spencer LM (1991) Impact of carnivore ravaging on zooarchaeological measures of element abundance. Am Antiq 56:645–658CrossRefGoogle Scholar
  56. Marean CW, Spencer LM, Blumenschine RJ, Capaldo SD (1992) Captive hyena bone choice and destruction, the schlepp effect, and Olduvai archaeofaunas. J Archaeol Sci 19:101–121CrossRefGoogle Scholar
  57. Mills MGL, Mills MGJ (1977) An analysis of bones collected at hyaena breeding dens in the Gemsbok National Parks (Mammalia: Carnivora). Ann Transv Mus 30(14):145–155Google Scholar
  58. Orloff LM, Marean CW (1990) Taphonomic implications of bone choice and destruction by captive spotted hyenas. Paper presented at the Annual Meeting of the Society of Vertebrate Paleontology, Lawrence, KansasGoogle Scholar
  59. Owens DD, Owens MJ (1978) Feeding ecology and its influence on social organisation in brown hyaenas (Hyaena brunnea) of the central Kalahari desert. E Afr Wildl J 16:113–136CrossRefGoogle Scholar
  60. Parkinson J, Plummer T, Hartstone-Rose A (2015) Characterizing felid tooth marking and gross bone damage patterns using GIS image analysis: an experimental feeding study with large felids. J Hum Evol 80:114–134CrossRefGoogle Scholar
  61. Pobiner BL (2015) New actualistic data on the ecology and energetics of hominin scavenging opportunities. J Hum Evol 80:1–16CrossRefGoogle Scholar
  62. Potts R (1988) Early hominid activities at Olduvai. Aldine, New YorkGoogle Scholar
  63. Ruiter D, Berger L (2000) Leopards as taphonomic agents in dolomitic caves–implications for bone accumulations in the hominid-bearing deposits of South Africa. J Archaeol Sci 27:665–684CrossRefGoogle Scholar
  64. Schaller GB (1972) The Serengeti Lion: A Study of Predator-Prey Relations. The Univeristy of Chicago Press, Chicago.Google Scholar
  65. Selvaggio MM (1994) Carnivore tooth marks and stone tool butchery marks on scavenged bones: archaeological implications. J Hum Evol 27:215–228CrossRefGoogle Scholar
  66. Simons JW (1966) The presence of leopard and a study of the food debris in the leopard lairs of the Mount Suswa caves, Kenya. Bulletin of the Cave Exploration Group of East Africa 1:51–69Google Scholar
  67. Sinclair ARE, Norton-Griffiths M (1979) Serengeti: dynamics of an ecosystem. University of Chicago Press, ChicagoGoogle Scholar
  68. Skinner JD (1976) Ecology of the brown hyaena Hyaena brunnea in the Transvaal with a distribution map for southern Africa. S Afr J Wildl Res 72:262–269Google Scholar
  69. Skinner JD, Davis S, Ilani G (1980) Bone collecting by striped hyaenas, Hyaena hyaena, in Israel. Paleontol Afr 23:99–104Google Scholar
  70. Skinner JD, Henschel JR, van Jaarsveld AS (1986) Bone-collecting habits of spotted hyaenas Crocuta crocuta in the Kruger National Park. S Afr J Zool 21(4):303–308CrossRefGoogle Scholar
  71. Stiner MC (1990) The use of mortality patterns in archaeological studies of hominid predatory adaptations. J Anthopol Archaeol 9:305–351CrossRefGoogle Scholar
  72. Sutcliffe AJ (1970) Spotted hyaena: crusher, gnawer, digester and collector of bones. Nature 227(5263):1110–1113CrossRefGoogle Scholar
  73. Wagner AP, Frank LG, Creel S (2008) Spatial grouping in behaviourally solitary striped hyaenas, Hyaena hyaena. Anim Behav 75:1131–1142CrossRefGoogle Scholar
  74. Watts HE, Holekamp KE (2007) Hyena societies. Curr Biol 17(16):657–660CrossRefGoogle Scholar
  75. Yravedra J, Lagos L, Barcena F (2011) A taphonomic study of wild wolf (Canis lupus) modification of horse bones in Northwestern Spain. J Taphonomy 9:37–65Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mari Carmen Arriaza
    • 1
    • 2
    • 3
    Email author
  • Elia Organista
    • 3
  • José Yravedra
    • 3
    • 4
  • Manuel Santonja
    • 5
  • Enrique Baquedano
    • 3
    • 6
  • Manuel Domínguez-Rodrigo
    • 3
    • 4
    • 7
  1. 1.School of Geography, Archaeology and Environmental StudiesUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Centre of Excellence in PalaeosciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.Institute of Evolution in Africa (IDEA)MadridSpain
  4. 4.Department of PrehistoryComplutense UniversityMadridSpain
  5. 5.CENIEH (Centro Nacional de Investigación sobre la Evolución Humana)BurgosSpain
  6. 6.Museo Arqueológico RegionalMadridSpain
  7. 7.Real Colegio Complutense at HarvardCambridgeUSA

Personalised recommendations