Archaeological and Anthropological Sciences

, Volume 11, Issue 7, pp 3225–3238 | Cite as

Evaluating prepared core assemblages with three-dimensional methods: a case study from the Middle Paleolithic at Skhūl (Israel)

  • Kathryn L. RanhornEmail author
  • David R. Braun
  • Rebecca E. Biermann Gürbüz
  • Elliot Greiner
  • Daniel Wawrzyniak
  • Alison S. Brooks
Original Paper


Levallois technology is a hallmark of many Middle and Late Pleistocene stone artifact assemblages, but its definition has been much debated. Here we use three-dimensional photogrammetry to investigate the geometric variation among Levallois and discoidal core technologies. We created models of experimental and archaeological stone artifact assemblages to quantitatively investigate the morphologies of Levallois and discoidal core technologies. Our results demonstrate that technological characteristics of Levallois technology can be distinguished from discoidal variants by analyzing the relative volumes and angles of the two flaking surfaces. We apply these methods to a random subset of Middle Paleolithic cores from Skhūl (Israel) and show that, overall, the Skhūl archaeological sample falls in range with the experimental Levallois sample. This study advocates the investigation of core technology on a spectrum to elucidate particular reduction trajectories while maintaining visible outliers and dispersion within an assemblage. Our quantified approach to studying centripetal core technology broadly is particularly applicable in studies related to forager mobility strategy and raw material use. Ultimately, the methods developed here can be used across temporal and geographic boundaries and facilitate attribute-based inter-site comparisons.


Levallois Photogrammetry Digital archaeology 



The authors thank Jean-Jacques Pelegrin and Pierre-Jean Texier and Nada Kreisheh for providing the experimental Levallois cores included in this analysis. The Harvard Peabody Museum enabled KR to study the Skhūl sample. The workflow outlined here is available in the supplemental information. Ana Barun provided helpful assistance with photogrammetrical modeling. The authors thank Christian Tryon, Tyler Faith, and four anonymous reviewers for their insightful comments on previous versions of this manuscript.


The National Science Foundation Integrative Education and Research Training grant 0801634 funded this study.

Supplementary material

12520_2018_746_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 23 kb)


  1. Adler DS, Wilkinson KN, Blockley S, Mark DF, Pinhasi R, Schmidt-Magee BA, Nahapetyan S, Mallol C, Berna F, Glauberman PJ, Raczynski-Henk Y, Wales N, Frahm E, Joris O, MacLeod A, Smith VC, Cullen VL, Gasparian B (2014) Early Levallois technology and the Lower to Middle Paleolithic transition in the southern Caucasus. Science 345:1609–1613Google Scholar
  2. Archer W, Gunz P, van Niekerk KL, Henshilwood CS, McPherron SP (2015) Diachronic change within the Still Bay at Blombos Cave, South Africa. PloS One 10:e0132428Google Scholar
  3. Bar-Yosef O (1998) The chronology of the Middle Paleolithic of the Levant. In: Akazawa T, Aoki K, Bar-Yosef O (eds) Neanderthals and Modern Humans in Western Asia. Plenum Press, New York, pp 39–56Google Scholar
  4. Bar-Yosef O, Meignen L (1992) Insights into Levantine Middle Paleolithic cultural variability. In: Dibble HL, Mellars P (eds) The Middle Paleolithic: adaptation, behavior, and variability. University of Pennsylvania, PennsylvaniaGoogle Scholar
  5. Benazzi S, Douka K, Fornai C, Bauer CC, Kullmer O, Svoboda J, Pap I, Mallegni F, Bayle P, Coquerelle M, Condemi S, Ronchitelli A, Harvati K, Weber GW (2011) Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479:525–528CrossRefGoogle Scholar
  6. Binford SR (1968) Early Upper Pleistocene adaptations in the Levant 1. Am Anthropol 70:707–717CrossRefGoogle Scholar
  7. Blinkhorn J, Grove M (2018) The structure of the Middle Stone Age of eastern Africa. Quat Sci Rev 195:1–20Google Scholar
  8. Boëda É (1986) Approche technologique du concept Levallois et évaluation de son champ d'application: étude de trois gisements saaliens et weichseliens de la France septentrionale. Paris 10Google Scholar
  9. Boëda E (1990) De La Surface Au Volume: Analyse De Conceptions De Débitage Levallois Et Laminaire. In: Farizy C (ed) Paléolithique Moyen Récent Et Palélithique Superier Ancien En Europe, 3, 63-68. Nemours: C.N.R.S. and Ministère de La CultureGoogle Scholar
  10. Boëda É (1993) Le débitage discoïde et le débitage Levallois récurrent centripète. Bull Soc Préhist Fr 90:392–404CrossRefGoogle Scholar
  11. Boëda É (1995) Levallois: a volumetric concept, methods, a technique. In: Dibble HL, Bar-Yosef O (eds) The definition and interpretation of Levallois technology. Prehistory Press, Madison, pp 41–68Google Scholar
  12. Boëda É, Geneste J-M, Meignen L (1990) Identification de chaînes opératoires lithiques du Paléolithique ancien et moyen. Paléo 2:43–80CrossRefGoogle Scholar
  13. Brantingham PJ, Kuhn SL (2001) Constraints on Levallois core technology: a mathematical model. J Archaeol Sci 28:747–761Google Scholar
  14. Brantingham PJ, Olsen JW, Rech JA, Krivoshapkin AI (2000) Raw material quality and prepared core technologies in Northeast Asia. J Archaeol Sci 27:255–271Google Scholar
  15. Bretzke K, Conard NJ (2012) Evaluating morphological variability in lithic assemblages using 3D models of stone artifacts. J Archaeol Sci 39:3741–3749CrossRefGoogle Scholar
  16. Brooks AS (1978) A note on the Late Stone Age features at ≠Gi: analogies from historic San hunting practices. Botswana. Notes, pp 1–3Google Scholar
  17. Brothwell DR (1961) The people of Mount Carmel - a reconsideration of their position in human evolution. Proc Prehist Soc 27:155–159CrossRefGoogle Scholar
  18. Clark JD (1969) Kalambo Falls Prehistoric Site, Volume III: The Earlier Cultures: Middle and Earlier Stone age. Cambridge University Press, CambridgeGoogle Scholar
  19. Clarkson C, Vinicius L, Lahr MM (2006) Quantifying flake scar patterning on cores using 3D recording techniques. J Archaeol Sci 33:132–142CrossRefGoogle Scholar
  20. Commont V (1909) L’industrie moustérianne dans la région du Nord de la France. Congès Préhistorique de France 5ème session. Bureaux de la Société Préhistorique de France, Paris, pp 115e157Google Scholar
  21. Copeland L (1975) The middle and upper Palaeolithic of Lebanon and Syria in the light of recent research. In: Wendorf F, Marks AE (eds) Problems in Prehistory: North Africa and the Levant, SMU Press, Dallas, p 317–350Google Scholar
  22. Dibble HL (1997) Platform variability and flake morphology: a comparison of experimental and archaeological data and implications for interpreting prehistoric lithic technological strategies. Lithic Technol 22:150–170CrossRefGoogle Scholar
  23. Dibble HL, Bar-Yosef O (1995) The definition and interpretation of Levallois technology. Prehistory Press, MadisonGoogle Scholar
  24. Dibble HL, Rezek Z (2009) Introducing a new experimental design for controlled studies of flake formation: results for exterior platform angle, platform depth, angle of blow, velocity, and force. J Archaeol Sci 36:1945–1954CrossRefGoogle Scholar
  25. Ekshtain R, Tryon C (2018) Lithic raw material acquisition and use by early Homo sapiens at Skhul, Israel. J Hum Evol. (in press)Google Scholar
  26. Eren MI, Bradley BA (2009) Experimental evaluation of the Levallois “core shape maintenance” hypothesis. Lithic Technol 34:119–125CrossRefGoogle Scholar
  27. Eren MI, Lycett SJ (2012) Why Levallois? A morphometric comparison of experimental ‘Preferential’ Levallois flakes versus debitage flakes. PLoS One 7:1–10Google Scholar
  28. Eren MI, Lycett SJ (2016) A statistical examination of flake edge angles produced during experimental lineal Levallois reductions and consideration of their functional implications. J Archaeol Method Theory 23:379–398CrossRefGoogle Scholar
  29. Garrod D, Bate D (1937) The stone age of Mt Carmel, excavations at the Wadi El-Mughara, vol 1. Clarendon Press, OxfordGoogle Scholar
  30. Geneste J-M (1988) Systèmes d’approvisionnement en matières premières au Paléolithique moyen et au Paléolithique supérieur en Aquitaine. L’homme de Néandertal 8:61–70Google Scholar
  31. Groucutt HS, Scerri EM, Stringer C, Petraglia MD (2018) Skhul lithic technology and the dispersal of Homo sapiens into Southwest Asia. Quaternary International. (in press).
  32. Grün R, Stringer C, McDermott F, Nathan R, Porat N, Robertson S, Taylor L, Mortimer G, Eggins S, McCulloch M (2005) U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J Hum Evol 49:316–334CrossRefGoogle Scholar
  33. Hovers E (2006) Neanderthals and modern humans in the Levant: what kind of interaction? In: Conard NJ (ed) When Neandertals and Moderns Met. Kerns Verlag, Tübingen, pp 65–86Google Scholar
  34. Hovers E (2009) The lithic assemblages of Qafzeh cave. Oxford University Press, OxfordGoogle Scholar
  35. Howell FC (1961) Isimila: a Paleolithic site in Africa. Sci Am 205:118–129CrossRefGoogle Scholar
  36. Howells WW (1970) Mount Carmel man: morphological relationships. Anthropology 1:269–272Google Scholar
  37. Inizan ML, Reduron-Ballinger M, Roche H, Tixier J (1999) Technology and terminology of knapped stone followed by a multilingual vocabulary (Arabic, English, French, German, Greek, Italian, Portuguese, Spanish). Translated by J. Féblot-Augustins. Préhistoire de la Pierre Taillée 5. C.R.E.P., Nanterre.Google Scholar
  38. Isaac GL (1977) Olorgesailie: Archaeological studies of a Middle Pleistocene lake basin in Kenya. University of Chicago Press, ChicagoGoogle Scholar
  39. Jelinek A (1982) The Tabun cave and paleolithic man in the Levant. Science 216:1369–1375CrossRefGoogle Scholar
  40. Kuhn SL (1992) On planning and curated technologies in the Middle Paleolithic. J Anthropol Res 48:185–214Google Scholar
  41. Kuhn SL (1994) A formal approach to the design and assembly of mobile toolkits. Am Antiq 59:426–442Google Scholar
  42. Leslie DE (2008) Formal variation in lithic projectile armatures: re-interpreting points from Tabun Cave, Israel. Florida Atlantic University, Boca RatonGoogle Scholar
  43. Lin SCH, Douglass MJ, Holdaway SJ, Floyd B (2010) The application of 3D laser scanning technology to the assessment of ordinal and mechanical cortex quantification in lithic analysis. J Archaeol Sci 37:694–702CrossRefGoogle Scholar
  44. Lycett SJ (2009) Quantifying transitions: morphometric approaches to Palaeolithic variability and technological change, sourcebook of Paleolithic transitions. Springer, Dordrecht, pp 79–92Google Scholar
  45. Lycett SJ, von Cramon-Taubadel N (2013) A 3D morphometric analysis of surface geometry in Levallois cores: patterns of stability and variability across regions and their implications. J Archaeol Sci 40:1508–1517CrossRefGoogle Scholar
  46. Lycett SJ, Eren MI (2013a) Levallois economics: an examination of ‘waste’ production in experimentally produced Levallois reduction sequences. J Archaeol Sci 40:2384–2392CrossRefGoogle Scholar
  47. Lycett SJ, Eren MI (2013b) Levallois lessons: the challenge of integrating mathematical models, quantitative experiments and the archaeological record. World Archaeol 45:519–538CrossRefGoogle Scholar
  48. Lycett SJ, Norton CJ (2010) A demographic model for Palaeolithic technological evolution: the case of East Asia and the Movius line. Quat Int 211:55–65CrossRefGoogle Scholar
  49. Lycett SJ, Von Cramon-Taubadel N, Eren MI (2016) Levallois: potential implications for learning and cultural transmission capacities. Lithic Technol 41:19–38Google Scholar
  50. Magnani M, Rezek Z, Lin SC, Chan A, Dibble HL (2014) Flake variation in relation to the application of force. J Archaeol Sci 46:37–49CrossRefGoogle Scholar
  51. Marks AE, Rose JI (2014) A century of research into the origins of the Upper Paleolithic in the Levant. In: Otte M (ed) Néandertal / Cro-Magnon: La Rencontre. Éditions Errance, Arles, pp 221–266Google Scholar
  52. Marks AE, Volkman P (1983) Changing core reduction strategies: a technological shift from the Middle to the Upper Paleolithic in the southern Levant. The Mousterian legacy: human biocultural change in the Upper Pleistocene, pp 13–34Google Scholar
  53. McCown TD (1937) Mugharet es-skhul. Description and excavations. In: Garrod DA, Bate DMA (eds) The Stone Age of Mount Carmel, Vol I. Excavations at the Wady El-Mughara. Clarendon Press, Oxford, pp 91–107Google Scholar
  54. Meignen L (1995) Levallois lithic production systems in the Middle Paleolithic of the Near East: the case of the unidirectional method. In: Dibble HL, Bar-Yosef O (eds) The Definition and Interpretation of Levallois Technology. Prehistory Press, Madison, WisconsinGoogle Scholar
  55. Mercier N, Valladas H, Bar-Yosef O, Vandermeersch B, Stringer C, Joron J-L (1993) Thermoluminescence date for the Mousterian burial site of Es-Skhul, Mt. Carmel. J Archaeol Sci 20:169–174CrossRefGoogle Scholar
  56. Mithen SJ (1997) Cognitive archaeology, evolutionary psychology, and cultural transmission with particular refernce to religious ideas. In: Barton CM, Clark GA (eds) Rediscovering Darwin: evolutionary theory in archaeological explanation, Washington, DC, pp 67–74Google Scholar
  57. Monnier GF, Missal K (2014) Another Mousterian debate? Bordian facies, chaîne opératoire technocomplexes, and patterns of lithic variability in the western European Middle and Upper Pleistocene. Quat Int 350:59–83Google Scholar
  58. Moore MW, Perston Y (2016) Experimental insights into the cognitive significance of early stone tools. PLoS One 11:e0158803CrossRefGoogle Scholar
  59. Peresani M, Soressi M (2005) Discoid lithic technology: advances and implications. Archaeopress, OxfordGoogle Scholar
  60. Perpère M (1986) Apport de la typométrie à la définition des éclats Levallois: l'exemple d'Ault. Bulletin de la Société préhistorique française, 115-118Google Scholar
  61. Porter ST, Roussel M, Soressi M (2016) A simple photogrammetry rig for the reliable creation of 3D artifact models in the field: lithic examples from the Early Upper Paleolithic sequence of Les Cottés (France). Adv Archaeol Pract 4:71–86Google Scholar
  62. Ranhorn KL, Kaplan RS, Braun DR, Subiaul F, Brooks AS (2015) Detecting signatures of cultural transmission in lithic assemblages: an actualistic study. Society for American Archaeology, San Francisco, p 832Google Scholar
  63. Rezek Z, Lin S, Iovita R, Dibble HL (2011) The relative effects of core surface morphology on flake shape and other attributes. J Archaeol Sci 38:1346–1359CrossRefGoogle Scholar
  64. Ronen A (1979) Paleolithic industries. In: Horowitz A (ed) The Quaternary of Israel. Academic Press, New York, pp. 296–307Google Scholar
  65. Sandgathe DM (2004) Alternative interpretation of the Levallois reduction technique. Lithic Technol 29:147–159CrossRefGoogle Scholar
  66. Scerri EM, Groucutt HS, Jennings RP, Petraglia MD (2014a) Unexpected technological heterogeneity in northern Arabia indicates complex Late Pleistocene demography at the gateway to Asia. J Hum Evol 75:125–142CrossRefGoogle Scholar
  67. Scerri EML, Drake NA, Jennings R, Groucutt HS (2014b) Earliest evidence for the structure of Homo sapiens populations in Africa. Quat Sci Rev 101:207–216Google Scholar
  68. Scerri EM, Gravina B, Blinkhorn J, Delagnes A (2016) Can lithic attribute analyses identify discrete reduction trajectories? A quantitative study using refitted lithic sets. J Archaeol Method Theory 23:669–691CrossRefGoogle Scholar
  69. Schank JC, Wimsatt WC (1986) Generative entrenchment and evolution, PSA: Proceedings of the biennial meeting of the philosophy of science association. Philosophy of Science Association, Baltimore, pp 33–60Google Scholar
  70. Schlanger N (1996) Understanding Levallois: lithic technology and cognitive archaeology. Camb Archaeol J 6:231–254CrossRefGoogle Scholar
  71. Schwarcz H, Grün R, Vandermeersch B, Bar-Yosef O, Valladas H, Tchernov E (1988) ESR dates for the hominid burial site of Qafzeh in Israel. J Hum Evol 17:733–737CrossRefGoogle Scholar
  72. Shea JJ (2003) The Middle Paleolithic of the East Mediterranean Levant. J World Prehist 17:313–394Google Scholar
  73. Shea JJ (2008) Transitions or turnovers? Climatically-forced extinctions of Homo sapiens and Neanderthals in the East Mediterranean Levant. Quat Sci Rev 27:2253–2270Google Scholar
  74. Shea JJ, Bar-Yosef O (2005) Who Were The Skhul/Qafzeh People? An Archaeological Perspective on Eurasia's Oldest Modern Humans. Mitekufat Haeven: J Israel Prehist Soc 468–451Google Scholar
  75. Shipton C (2010) Imitation and shared intentionality in the Acheulean. Camb Archaeol J 20:197–210CrossRefGoogle Scholar
  76. Simpson HP, Schwarcz JJ, Stringer CB (1998) Neanderthal skeleton from Tabun: U-series data by gamma-ray spectrometry. J Hum Evol 35:635–645CrossRefGoogle Scholar
  77. Soressi M, McPherron SP, Lenoir M, Dogandzic T, Goldberg P, Jacobs Z, Maigrot Y, Martisius NL, Miller CE, Rendu W, Richards M, Skinner MM, Steele TE, Talamo S, Texier JP (2013) Neandertals made the first specialized bone tools in Europe. Proc Natl Acad Sci U S A 110:14186–14190CrossRefGoogle Scholar
  78. Stringer CB, Grün R, Schwarcz HP, Goldberg P (1989) ESR dates for the hominid burial site of Es Skhul in Israel. Nature 338:756–758CrossRefGoogle Scholar
  79. Tostevin G (2011) Levels of theory and social practice in the reduction sequence and chaîne opératoire methods of lithic analysis. Paleo Anthropology 2011:351–-375Google Scholar
  80. Tostevin G (2012) Seeing lithics: a middle-range theory for testing for cultural transmission in the Pleistocene. American school of prehistoric research monograph series, Peabody Museum, Harvard University, & Oxbow Books, CambridgeGoogle Scholar
  81. Trigger BG (1989) A history of archaeological thought. Cambridge University Press, CambridgeGoogle Scholar
  82. Tryon CA (2010) How the geological record affects our reconstructions of Middle Stone Age settlement patterns: the case of alluvial fans in Baringo, Kenya. In: Conard N, Delagnes A (eds) Settlement dynamics of the Middle Paleolithic & Middle Stone Age, vol III. Kerns Verlag, Tübingen, pp 39–66Google Scholar
  83. Tryon CA, McBrearty S, Texier P-J (2005) Levallois lithic technology from the Kapthurin Formation, Kenya: Acheulian origin and Middle Stone Age diversity. Afr Archaeol Rev 22:199–229Google Scholar
  84. Valladas H, Reyss J-L, Joron J-L, Valladas G, Bar-Yosef O, Vandermeersch B (1988) Thermoluminescence dating of Mousterian proto-Cro-Magnon remains from Israel and the origin of modern man. Nature 331:614–616CrossRefGoogle Scholar
  85. Valladas H, Mercier N, Froget L, Hovers E, Joron J-L, Kimbel WH, Rak Y (1999) TL dates for the Neanderthal site of the Amud Cave Israel. J Archaeol Sci 26:259–268Google Scholar
  86. Van Peer P (1992) The Levallois Reduction Strategy. Prehistory Press, MadisonGoogle Scholar
  87. Vandermeersch B (1981) Les Hommes Fossiles de Qafzeh (Israël). Éditions CNRS, ParisGoogle Scholar
  88. Wallace IJ, Shea JJ (2006) Mobility patterns and core technologies in the Middle Paleolithic of the Levant. J Archaeol Sci 33:1293–1309Google Scholar
  89. Wynn T, Coolidge FL (2004) The expert Neandertal mind. J Hum Evol 46:467–487CrossRefGoogle Scholar
  90. Yamei H, Potts R, Baoyin Y, Zhengtang G, Deino A, Wei W, Clark J, Guangmao X, Weiwen H (2000) Mid-Pleistocene Acheulean-like stone technology of the Bose basin, South China. Science 287:1622–1626CrossRefGoogle Scholar
  91. Yellen J, Brooks AS, Helgren D, Tappen M, Ambrose SH, Bonnefille R, Feathers JK, Goodfriend G, Ludwig K, Renne P, Stewart K (2005) The archaeology of Aduma Middle Stone Age sites in the Awash Valley, Ethiopia. Paleo Anthropology 10:25–100Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnthropologyHarvard University, Peabody Museum of Archaeology and EthnologyCambridgeUSA
  2. 2.Center for the Advanced Study of Human Paleobiology, Department of AnthropologyThe George Washington UniversityWashingtonUSA
  3. 3.Archaeology DepartmentUniversity of Cape TownRondeboschSouth Africa
  4. 4.Department of AnthropologyUniversity at Buffalo, SUNYAmherstUSA
  5. 5.Department of AnthropologyUniversity of MichiganAnn ArborUSA
  6. 6.Human Origins ProgramSmithsonian InstitutionWashingtonUSA

Personalised recommendations