Archaeological and Anthropological Sciences

, Volume 11, Issue 7, pp 3143–3153 | Cite as

Methodological approach for dating harbor sediments by using luminescence dating—a case study in Ephesus, Western Turkey

  • Prakrit NoppraditEmail author
  • Anika Symanczyk
  • Ludwig Zöller
  • Helmut Brückner
  • Friederike Stock
Original Paper


For this study, a 15-m sediment core from the Roman harbor of Ephesus has been dated with the luminescence technique. 14C age estimates from the same and a neighboring core were used for comparing and validating the luminescence dating results via a single aliquot regenerative dose (SAR) protocol: infrared stimulation of polymineral and blue stimulation of quartz. The results reveal new insights into the deposition of the sediments of the Roman harbor from 2000 BC to AD 1500 approximately. Some samples showed incomplete bleaching. The difference between the polymineral and the quartz techniques described the bleaching condition before burial. When both approaches give consistent ages, complete bleaching can be assumed. Consistent ages were further applied to the Bayesian age-depth model and discussed within the archeological context. Based on the Bayesian age-depth model, a high sedimentation rate of ca. 65 mm/year was calculated for the period of ~ 700–400 BC suggesting a fast advance of the delta front. However, other age estimates suggest a fast advance for the period 200 BC to ca. AD 100. This is probably due to incomplete bleaching of the luminescence samples and the use of bulk samples for 14C for this new study. Comparing the results with nearby cores suggests that dredging was conducted in the southern part of the Roman harbor at a depth of ca. 5 m b.s.l.


Luminescence dating Radiocarbon Drill core Geoarchaeology Western Anatolia Ephesus 



The authors thank the Austrian Archeological Institute, especially the excavation director Sabine Ladstätter, for the continued financial and logistic support of our studies. The Turkish government authorities kindly granted the research permits. The new 14C datings of Eph 395 and 278 were supported by the Austrian National Bank (grant number 17134).


  1. Aitken MJ (1985) Thermoluminescence dating. Academic Press, LondonGoogle Scholar
  2. Aitken MJ (1998) An introduction to optical dating. Oxford University Press, OxfordGoogle Scholar
  3. Alappat L, Tsukamoto S, Singh P, Srikanth D, Ramesh R, Frechen M (2010) Chronology of Cauvery Delta sediments from shallow subsurface cores using elevated-temperature post-IR IRSL dating of feldspar. Geochronometria 37:37–47. CrossRefGoogle Scholar
  4. Algan O, Yalcin MN, Özdogan M, Yılmaz Y, Sarı E, Kırcı-Elmas E, Yılmaz İ, Bulkan Ö, Ongan D, Gazioğlu C, Nazik A, Ali Polat M, Meriç E (2011) Holocene coastal change in the ancient harbor of Yenikape-Istanbul and its impact on cultural history. Quat Res 76:30–45. CrossRefGoogle Scholar
  5. Banerjee D, Murray AS, Bøtter-Jensen L, Lang A (2001) Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiat Meas 33:73–94. CrossRefGoogle Scholar
  6. Bernasconi MP, Melis R, Stanley JD (2006) Benthic biofacies to interpret Holocene paleoenvironmental changes and human impact in Alexandria's Eastern Harbor, Egypt. The Holocene 16(8):1163–1176. CrossRefGoogle Scholar
  7. Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Proc Land 26:1237–1248CrossRefGoogle Scholar
  8. Brückner H (2005) Holocene shoreline displacements and their consequences for human societies: the example of Ephesus in western Turkey. Z Geomorphol Supp 137:11–22Google Scholar
  9. Brückner H, Herda A, Müllenhoff M, Rabbel W, Stümpel H (2014) On the Lion Harbour and other harbours in Miletos: recent historical, archaeological, sedimentological, and geophysical research. Proceedings of the Danish Institute at Athens (PDIA), vol. VII: 49–103. AarhusGoogle Scholar
  10. Delile H, Blichert-Toft J, Goiran J-P, Stock F, Arnaud-Godet F, Bravard J-P, Brückner H, Albarède F (2015) Demise of a harbor: a geochemical chronicle from Ephesus. J Archaeol Sci 53:202–213. CrossRefGoogle Scholar
  11. Brückner H,Herda A,Kerschner M, Müllenhoff M, Stock F (2017) Life cycle of estuarine islands — From the formation to the landlocking of former islands in the environs of Miletos and Ephesos in western Asia Minor (Turkey). J Archaeol Sci: Reports, 12:876–894.
  12. Delile H, Goiran J-P, Blichert-Toft J, Arnaud-Godet F, Romano P, Bravard J-P (2016) A geochemical and sedimentological perspective of the life cycle of Neapolis harbor (Naples, southern Italy). Quat Sci Rev 150:84–97. CrossRefGoogle Scholar
  13. Duller GAT (2015) The analyst software package for luminescence data: overview and recent improvements. Ancient TL 33(1):35–42Google Scholar
  14. Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26CrossRefGoogle Scholar
  15. Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM (1999) Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41(2):339–364. CrossRefGoogle Scholar
  16. Godfrey-Smith DI, Huntley DJ, Chen WH (1988) Optical dating studies of quartz and feldspar sediment extracts. Quat Sci Rev 7(3–4):373–380. CrossRefGoogle Scholar
  17. Heer AJ, Adamiec G, Moska P (2012) How many grains are there on a single aliquot? Ancient TL 30:9–16Google Scholar
  18. Huntley DJ, Lamothe M (2001) Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can J Earth Sci 38(7):1093–1106. CrossRefGoogle Scholar
  19. Huntley DJ, Godfrey-Smith DI, Thewalt MLW (1985) Optical dating of sediments. Nature 313:105–107. CrossRefGoogle Scholar
  20. Knibbe D (1998) Ephesus – Geschichte einer bedeutenden antiken Stadt und Portrait einer modernen Großgrabung im 102. Jahr der Wiederkehr des Beginnes österreichischer Forschungen (1895–1997). –Peter Lang, Frankfurt a. MainGoogle Scholar
  21. Kraft JC, Kayan I, Brückner H, Rapp G (2000) A geological analysis of ancient landscapes and the harbors of Ephesus and the Artemision in Anatolia. Jahreshefte Des Österreichischen Archäologischen Institutes in Wien 69:175–233Google Scholar
  22. Kraft JC, Kayan İ, Brückner H (2001) The geological and paleogeographical environs of the Artemision. In: Muss U (ed) Der Kosmos der Artemis von Ephesos. Sonderschriften 37. Österreichisches Archäologisches Institut, Wien, pp 123–133Google Scholar
  23. Kraft JC, Rapp G, Kayan İ, Luce JV (2003) Harbor areas at ancient Troy: sedimentology and geomorphology complement Homer’s Iliad. Geology 31(2):163–166.<0163:HAAATS>2.0.CO;2 CrossRefGoogle Scholar
  24. Kraft JC, Brückner H, Kayan İ (2005) The sea under the city of ancient Ephesus. In: Krinzinger F, Brandt B, Gassner V, Ladstätter S (eds) Synergia. Festschrift, vol 1. Phoibos, Wien, pp 147–156Google Scholar
  25. Kraft JC, Brückner H, Kayan İ, Engelmann H (2007) The geographies of ancient Ephesus and the Artemision in Anatolia. Geoarchaeology 22(1):121–149CrossRefGoogle Scholar
  26. Kraft JC, Rapp G, Brückner H et al (2011) Results of the struggle at ancient Ephesus: natural processes 1, human intervention 0. Geol Soc Lond Spec Publ 35:27–36CrossRefGoogle Scholar
  27. Kreutzer S, Burrow C, Dietze M, Fuch MC, Fischer M, Schmidt C (2017) Software in the context of luminescence dating: status, concepts and suggestions exemplified by the R package ‘luminescence. Ancient TL 35(2):1–11Google Scholar
  28. Kulig G (2005) Erstellung einer Auswertesoftware zur Altersbestimmung mittels Lumineszenzverfahren unter spezieller Berücksichtigung des Einflusses radioaktiver Ungleichgewichte in der 238U-Zerfallsreihe, B.Sc. Thesis, TU Bergakademie FreibergGoogle Scholar
  29. Lai ZP, Zöller L, Fuchs M, Brückner H (2008) Alpha efficiency determination for OSL of quartz extracted from Chinese loess. Radiat Meas 43(2–6):767–770. CrossRefGoogle Scholar
  30. Lauer T, Bonn R, Frechen M, Fuchs MC, Trier M, Tsukamoto S (2011) Geoarchaeological studies on Roman time harbour sediments in Cologne — comparison of different OSL dating techniques. Geochronometria 38(4):341–349. CrossRefGoogle Scholar
  31. Ledger M, Friederike S, Schwaiger H, Knipping M, Brückner H, Ladstätter S, Mitchella PD (2018) Intestinal parasites from public and private latrines and the harbour canal in Roman Period Ephesus, Turkey (1st c. BCE to 6th c. CE). J Archaeol Sci: Reports, 21: 289-297.
  32. Lougheed BC, Obrochta SP, Lenz C, Mellström A, Metcalfe B, Muscheler R, Reinholdsson M, Snowball I, Zillén L (2017) Bulk sediment 14C dating in an estuarine environment: how accurate can it be? Paleoceanogr Paleoclimatol 32(2):123–131. CrossRefGoogle Scholar
  33. Marriner N, Morhange C (2006) The ‘Ancient Harbour Parasequence’: anthropogenic forcing of the stratigraphic highstand record. Sediment Geol 186(1–2):13–17. CrossRefGoogle Scholar
  34. Mazzini I, Faranda C, Giardini M, Giraudi C, Sadori L (2011) Late Holocene palaeoenvironmental evolution of the ancient harbour of Portus (Latium, Central Italy). J Palaeolimnol 46(2):243–256. CrossRefGoogle Scholar
  35. Morhange C, Blanc F, Schmitt-Mercury S, Bourcier M, Carbonel P, Oberlin C, Prone A, Vivent D, Hesnard A (2003) Stratigraphy of late-Holocene deposits of the ancient harbour of Marseilles, southern France. The Holocene 13(4):593–604. CrossRefGoogle Scholar
  36. Murray AS, Wintle AG (2000) Dating quartz using an improved single-aliquot regenerative-dose (SAR) protocol. Radiat Meas 32(1):57–73. CrossRefGoogle Scholar
  37. Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek M, Richter D, Spencer JQG (2008) Luminescence dating: basics, methods and applications. E&G Quat Sci J 57:95–149. Google Scholar
  38. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51(4):1111–1150CrossRefGoogle Scholar
  39. Salomon P, Delile H, Goiran JP, Bravard JP, Keay S (2012) The Canale di Comunicazione Traverso in Portus: the Roman Sea harbour under river influence (Tiber delta, Italy). Géomorphologie: Relief, Processus, Environnement 1:75–90. CrossRefGoogle Scholar
  40. Sanderson DCW, Bishop P, Stark MT, Spencer JQ (2003) Luminescence dating of anthropogenically reset canal sediments from Angkor Borei, Mekong Delta, Cambodia. Quat Sci Rev 22:1111–1121. CrossRefGoogle Scholar
  41. Schwarzbauer J, Stock F, Brückner H, Dsikowitzky L, Krichel M (2018) Molecular organic indicators for human activities in the Roman harbor of Ephesus, Turkey. Geoarchaeology:1–12.
  42. Steskal M (2015) Ephesus and its harbors: a city in search of its place. In: Ladstätter S, Pirson F, Schmidts T (eds) Harbors and harbor cities in the eastern Mediterranean (BYZAS 19). Ege Yayinlari, Istanbul, pp 325–338Google Scholar
  43. Stock F, Pint A, Horejs B, Ladstätter S, Brückner H (2013) In search of the harbours: new evidence of Late Roman and Byzantine harbours of Ephesus. Quatern Int 312:57–69. CrossRefGoogle Scholar
  44. Stock F, Kerschner M, Kraft JC, Pint A, Frenzel P, Brückner H (2014) The palaeo-geographies of Ephesus (Turkey), its harbours and the Artemision – a geoarchaeological reconstruction for the timespan 1500–300 BC. Z Geomorphol Supp 58(2):33–66. CrossRefGoogle Scholar
  45. Stock F, Ehlers L, Horejs B, Knipping M, Ladstätter S, Seren S, Brückner H (2015) Neolithic settlement sites in Western Turkey — palaeogeographic studies at Çukuriçi Höyük and Arvalya Höyük. J Archaeol Sci Rep 4:565–577. Google Scholar
  46. Stock F, Knipping M, Pint A, Ladstätter S, Delile H, Heiss AG, Laermanns H, Mitchell P, Ployer R, Steskal M, Thanheiser U, Urz R, Wennrich V, Brückner H (2016) Human impact on Holocene sediment dynamics in the Eastern Mediterranean – the example of the Roman harbour of Ephesus. Earth Surf Proc Land 41:980–996. CrossRefGoogle Scholar
  47. Véron A, Goiran JP, Morhange C, Marriner N, Empereur JY (2006) Pollutant lead reveals the pre-Hellenistic occupation and ancient growth of Alexandria, Egypt. Geophys Res Lett 33:1–4. CrossRefGoogle Scholar
  48. Zabehlicky H (1995) Preliminary views of the Ephesian Harbor. In: Köster H (ed), Ephesus – Metropolis of Asia. An interdisciplinary approach to its archaeology, religion, and culture. Harvard Theological Studies 41:201–216Google Scholar
  49. Zabehlicky H (1999) Die Grabungen im Hafen von Ephesus 1987–1989. In: Friesinger H, Krinzinger F (eds) 100 Jahre österreichische Forschungen in Ephesus. Akten des Symposions Wien 1995. Archäologische Forschungen 1, Denkschriften Wien, 260, pp 479–484Google Scholar
  50. Zeeden C, Dietze M, Kreutzer S (2018) Discriminating luminescence age uncertainty composition for a robust Bayesian modelling. Quat Geochronol 43:30–39. CrossRefGoogle Scholar
  51. Zöller L, Richter D, Masuth S, Wunner L, Fischer M, Antl-Weiser W (2013) Luminescence chronology of the Grub-Kranawetberg site, Austria. E&G Quat Sci J 62:127–135. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
corrected publication 2018

Authors and Affiliations

  1. 1.Institute of GeographyUniversity BayreuthBayreuthGermany
  2. 2.Institute of GeographyUniversity of CologneCologneGermany
  3. 3.Federal Institute of HydrologyKoblenzGermany

Personalised recommendations