Archaeometric constraints by multidisciplinary study of Richborough 527 amphorae and yellow clays from the C.da Portinenti pottery workshop (Lipari Island, Italy)

  • Marcella Di Bella
  • Maria Amalia Mastelloni
  • Angela Baldanza
  • Simona Quartieri
  • Francesco Italiano
  • Alessandro Tripodo
  • Davide Romano
  • Fabio Leonetti
  • Giuseppe SabatinoEmail author
Original Paper


During the archeological excavations carried out from 1993 to 1995 at C.da Portinenti, at Lipari Island, a pottery workshop dated to Roman age—including a kiln dump containing both Richborough 527 type amphora wastes and ceramic shreds—was discovered. The Richborough 527 amphorae had been used to transport local volcanic and hydrothermal products throughout the Roman Empire. Here, we present the results of a multidisciplinary archaeometric study carried out with the aim to shed light on the provenance of the raw materials used in the production of the Richborough 527 amphorae. To achieve this goal, amphora wastes and a sample of yellow clays stored in the archeological excavation area have been analyzed, and the data were compared to those available for clays coming from Lipari and from the Messina Province. The overall results indicate that (i) a volcanic sand from Portinenti Valley was used as temper in the ceramic mixture; (ii) the geochemical features and the fossils present in the ceramic paste are compatible with marine Pleistocene clayey deposits of the Messina Province and incompatible with the clays of Lipari island; (iii) the yellow clays found in the excavation area were not used to produce the Richborough 527; and (iv) the analyzed wastes are the results of a poorly controlled firing temperature during the ceramic artifact production.


Richborough 527 Ceramic amphora wastes Lipari Island Alumen and hydrothermal earths Microfossils Raw materials X-ray powder diffraction SEM-EDX XRF 



We thank two anonymous referees for the careful reading of the manuscript and their constructive comments, which improved the quality of the paper. G. Bueti and S. Larinà are thanked for their contribution to this research project, given during their degree work.

Supplementary material

12520_2018_727_Fig9_ESM.png (183 kb)
Fig. S1

XRPD patterns of the analyzed clay samples: A) Clay-Port and Clay-Fuardo; B) Clay-Messina (PNG 183 kb)

12520_2018_727_MOESM1_ESM.eps (3.1 mb)
High resolution image (EPS 3224 kb)
12520_2018_727_Fig10_ESM.png (1.1 mb)
Fig. S2

Distribution of Quaternary marine marly-clays deposits (Pleistocenic Clay Complex) outcropping along the north-eastern coast of Sicily, identified as possible supply area of raw materials used for the production of Richborough 527 amphorae (PNG 1155 kb)

12520_2018_727_MOESM2_ESM.tif (415 kb)
High resolution image (TIF 414 kb)
12520_2018_727_MOESM3_ESM.xlsx (17 kb)
ESM 1 (XLSX 17 kb)


  1. Baldanza, A., Belfiore, M.C., Di Bella, M., Pino, P., Sabatino, G., Triscari, M., 2010. Georisorse per le costruzioni in laterizio di Taormina e Naxos (Sicilia Nord-Orientale): dati petro-chimici e micropaleontologici. In: Atti Congresso Nazionale di Archeometria, AIAr “Riflessioni e trasparenze: diagnosi e conservazione di opere e manufatti vetrosi”, Ravenna 24–26 Febbraio 2009, Patron Editore, Bologna, 339–350Google Scholar
  2. Bernabò-Brea, L., Cavàlier, M., 2000a. Discariche di fornace romana e necropoli greche in contrada Portinenti. Meligunis Lipara, X, Rome, 255–482Google Scholar
  3. Bernabò-Brea, L., Cavàlier, M. 2000b. “Discariche di fornace romana e necropoli greche in contrada Portinenti”. Meligunis Lipara, X, Rome, 255–482Google Scholar
  4. Borgard, P., 1994. L’origine liparote des amphores. Société Française d’Étude de la Céramique Antique en Gaule. Actes du congrès de Millau (1994). SFECAG, 197–203Google Scholar
  5. Borgard, P. (2000). L’atelier de potiers du vallon de Portinenti (Lipari). Note preliminare sur la production amphorique (Ier s. av. J.-C.-III s. ap. J.-C.). In Meligunis Lipara, X, Rome, 273–297Google Scholar
  6. Borgard, P., 2001. L’alun de l’Occident romain. Production a 11ethods11tion des amphores romaines de Lipari”. Thèse de doctorat, Université de Provence (Aix-Marseille I). Document dactylographié, 4 volumesGoogle Scholar
  7. Borgard, P., Cavalier, M., 2003. Avec la participation de M. Picon et de R. Tomber. The Lipari origin of the Richborough 527. Journal of Roman Pottery Studies, 10, (2003) - Actes du colloque de Londres, 23–24 janvier 1994: Roman amphorae. Problems of identification and methodology, 96–106Google Scholar
  8. Borgard, P., Gateau, F., 1991. Des amphores canneleés à Cavaillon (Vaucluse) à la fin du 1er 11 ethod avant notre ère. Nouveaux 11 ethods 11 pour l’étude des Richborough 527, in Actes du Congrès de Cognac. 8–11 Mai 1991, L. Rivet ed., SFECAG, Marseille, 311–28Google Scholar
  9. Borgard, P., Gateau, F. Chedru, B., Knowles, K., 1991. Des amphores cannelées à Cavaillon (Vaucluse) à la fin du 1er siècle avant notre ère. Nouveaux 11ethods11 pour l’étude des Richborough 527. Société Française d’Étude de la Céramique Antique en Gaule. Actes du 11ethods11 de Cognac (1991). SFECAG, 311–325Google Scholar
  10. Capelli, C., Borgard, P., 2003. “Origine et typologie des amphores a alun de Lipari: données archéologiques et archéometriques.” L’alun de méditerrannée. Actes du colloque international. Napoli-Lipari 2003Google Scholar
  11. Cavalier, M., 1994. Les amphores Richborough 527. découverte d’un atelier à Portinenti (Lipari, Italie)”. Aetes du Congrès de Millau. 12–15 mai 1994 (SFECAG), Marseille, 189–196Google Scholar
  12. Cultrone G, Rodriguez-Navarro C, Sebastian E, Cazalla O, De La Torre MJ (2001) Carbonate and silicate phase reactions during ceramic firing. J Eur Ceram Soc 13:621–634Google Scholar
  13. Cultrone G, Sebastian E, Elert K, De La Torre MJ, Cazalla O, Rodriguez-Navarro C (2004) Influence of mineralogy and firing temperature on the porosity of bricks. J Eur Ceram Soc 24:547–564CrossRefGoogle Scholar
  14. Di Bella M, Italiano F, Sabatino G, Tripodo A, Baldanza A, Casella S, Pino P, Rasa R, Russo S (2016) Pleistocene volcaniclastic units from north-eastern Sicily (Italy): new evidence for calc-alkaline explosive volcanism in the Southern Tyrrhenian Sea. Geol Carpath 67(4):371–389CrossRefGoogle Scholar
  15. Forni, F., 2011. Petrology and geochemistry of Lipari Island (Aeolian archipelago): constraints on magma genesis and evolution. PhD thesis, University of Bologna, 1–257Google Scholar
  16. Forni, F., Lucchi, F., Peccerillo, A., Tranne, C.A., Rossi, P.L., & Frezzotti, M.L., 2013. In Lucchi, F., Peccerillo, A., Keller, J., Tranne, C.a., Rossi, P.L., (Eds.), The Aeolian islands volcanoes, 37, 213–279, London: Memoirs Geological SocietyGoogle Scholar
  17. Gillikin DP, Jacques Navez AL, Taylor JW, Eddy Keppens LA, Baeyens W, Dehairs F (2005) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochemistry, Geophysics and Geosystems 6(5):1–16CrossRefGoogle Scholar
  18. Laffranque M (1957) Poseidonios d’Apamée et les mines d’Ibérie. Pallas, Revue d’etudes antiques 5:17–25Google Scholar
  19. Mottana A (2001) Il pensiero di Teofrasto sui metalli secondo i frammenti delle sue opere e le testimonianze greche, latine, siriache ed arabe. Rend Fis Acc Lincei 9(12):133–241CrossRefGoogle Scholar
  20. Parker, A.J., 1992. Ancient shipwrecks of the Mediterranean and the Roman Provinces, BAR Internat. Ser. 580, OxfordGoogle Scholar
  21. Peacock DPS (1977) Roman amphorae: typology, fabric and origin. Méthodes classiques et methods formelles dans l’étude des amphores Collection de L’École Française de Rome 32:261–278Google Scholar
  22. Peacock DPS, Williams DF (1986) Amphorae and the Roman economy. Longman, London, pp 111–112Google Scholar
  23. Photos-Jones, E., Hall, A.J, 2008. Lemnian earth and the earths of the Aegean, an archaeological guide to medicines, pigments and washing powders. Potingair Press Glasgow, 1–115Google Scholar
  24. Pearce BW (1968) Roman coarse ware. In: Cunliffe BW (ed) Fifth report on the excavations of the Roman fort at Richborough. Kent, London, pp 117–124Google Scholar
  25. Peccerillo A (2005) Plio-quaternary volcanism in Italy: Petrology, geochemistry, geodynamics. SpringerVerlag Berlin, Heidelberg, pp 365Google Scholar
  26. Pino, P., Baldanza, A., Belfiore, C., Di Bella, M., Sabatino, G., Triscari, M., 2007. Selected clay units in the Messina Province (NE Sicily): a stratigraphic review. Epitome vol. 2, Geoitalia 2007, VI Forum Italiano di Scienze della Terra, Rimini, 12–14 settembre 2007, 401Google Scholar
  27. Pittinger J (1975) The mineral products of Melos in antiquity and their identification. dans ABSA 70:191–197Google Scholar
  28. Pouchou JL, Pichoir L (1984) Possibilités d’analyse en profondeur à la microsonde électronique. J Microsc Spectrosc Electron n 9:99–100Google Scholar
  29. Pouchou JL, Pichoir L (1985) Les elements très légersen microanalyse X: Possibilités des modèles récents de quantification. J Microsc Spectrosc Electron 11:229–250Google Scholar
  30. Triscari, M., Baldanza, A., Belfiore, C., Di Bella, M., Pino, P., Sabatino, G., Tigano, G., 2007. Clay units in NE Sicily: an integrated map and database finalized to archaeometric provenance studies. Epitome vol. 2, Geoitalia 2007, VI Forum Italiano di Scienze dellaTerra, Rimini 12–14 settembre 2007, 469Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marcella Di Bella
    • 1
  • Maria Amalia Mastelloni
    • 2
  • Angela Baldanza
    • 3
  • Simona Quartieri
    • 4
  • Francesco Italiano
    • 1
  • Alessandro Tripodo
    • 4
  • Davide Romano
    • 1
  • Fabio Leonetti
    • 4
  • Giuseppe Sabatino
    • 4
    Email author
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaPalermoItaly
  2. 2.Polo Regionale delle Isole Eolie, Parco, Museo Archeologico “L. Bernabò Brea”LipariItaly
  3. 3.Dipartimento di Fisica e GeologiaUniversità di PerugiaPerugiaItaly
  4. 4.Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della TerraUniversità di MessinaMessinaItaly

Personalised recommendations