Advertisement

An archaeometric approach of historical mortars taken from Foligno City (Umbria, Italy): news insight of Roman Empire in Italy

  • Michela Ricca
  • Giuliana Galli
  • Silvestro Antonio Ruffolo
  • Angela Sacco
  • Marco Aquino
  • Mauro Francesco La Russa
Original Paper
  • 17 Downloads

Abstract

This research has been focused on the study of mortars from four bridges of the ancient city of Foligno (Umbria, Italy), located along the old path of the Topino-Tinia River. An archaeometric study was undertaken to analyse ten archaeological samples in order to define textural features, chemical composition and raw materials used for their production. For this purpose, different analytical methods were used, such as polarising optical microscope (POM), X-ray diffraction (XRD) and electron microprobe analysis coupled with energy-dispersive spectrometry (EMPA-EDS).

Keywords

Archaeometry EMPA-EDS Microscopy Mortars Foligno Roman Time 

Notes

Acknowledgments

Thanks to the Archaeological Superintendence of Umbria: Superintendent Dr. Marica Mercalli, Dr. Giovanni Stranamore and Arch. Vanessa Squadroni, which made the Foligno città romana project possible. Thanks to the fully availability of the Councilor of Culture Prof. Rita Barbetti of the Municipality of Foligno (PG, Umbria - Italy).

References

  1. Belfiore CB, Fichera GV, La Russa MF, Pezzino A, Ruffolo SA, Galli G, Barca D (2015) A multidisciplinary approach for the archaeometric study of Pozzolanic aggregate in Roman mortars: the case of Villa dei Quintile (Rome, Italy). Archaeometry 57(2):269–296CrossRefGoogle Scholar
  2. Boynton R (1980) Chemistry and technology of lime and limestone, (II eds). Wiley, New YorkGoogle Scholar
  3. Camerieri P (2015) Il castrum e la pertica di Fulginia in destra Tinia. In: Galli G, Foligno città romana, Ricerche storico-urbanistiche-topografiche. Segrate, Milano (Italy), pp 75–107Google Scholar
  4. Camerieri P, Galli G (2015) Gli albori della romanizzazione in Umbria Opera poligonale e opera quadrata tra Perusia, Fulginia, Spoletium, Narnia e Interamna Nahars. In: CS Atti del VI Convegno Internazionale sulle mura poligonali, Alatri, ItalyGoogle Scholar
  5. Camerieri P, Galli G (2016) Foligno, antica Fulginia: riflessioni e ipotesi sulla città romana con l’ausilio di tecniche GIS, fotointerpretazione e cartointerpretazione, Il ruolo del drone. In: CS Atti del II Convegno Internazionale di Archeologia Aerea, Roma, Accademia Belgica, ItalyGoogle Scholar
  6. Camerieri P, Galli G, Galli G (2016) Dal castrum alla via della Quintana, dal tempio alla cattedrale Foligno città romana II, Segrate, ItalyGoogle Scholar
  7. Collepardi M (2003) La lezione dei romani: durabilità e sostenibilità delle opere architettoniche e strutturali. Proceedings of III Conference AIMAT “Restauro e Conservazione dei Beni Culturali: Materiali e Tecniche”, Cassino, ItalyGoogle Scholar
  8. Crisci GM, Franzini M, Lezzerini M, Mannoni T, Riccardi MP (2004) Ancient mortars and their binder. Periodico Mineral 73:259–268Google Scholar
  9. Ergenç D, Gómez-Villalba LS, Fort R (2018) Crystal development during carbonation of lime-based mortars in different environmental conditions. Mater Charact 142:276–288CrossRefGoogle Scholar
  10. Fichera GV, Belfiore CM, La Russa MF, Pezzino A (2012) Technological and geochemical study of historical mortars from the Roman “Villa dei Quintili” (Rome, Italy). Rend Online Soc Geol Ital 21(1):659–660Google Scholar
  11. Fichera GV, Belfiore CM, La Russa MF, Ruffolo SA, Barca D, Frontoni R, Galli G, Pezzino A (2015) Limestone provenance in Roman lime-volcanic ash mortars from the Villa dei Quintili, Rome. Geoarchaeology 30:79–99CrossRefGoogle Scholar
  12. Galli G (2012) L’impianto urbano della Foligno romana Stralci da uno studio di prossima pubblicazione. In: Notiziario bimestrale Archeoclub di Foligno 12–14Google Scholar
  13. Galli G (2014a) Cenni storici e Il fiume Topino, Foligno tra le mura Guida alla città 8-15:34–35Google Scholar
  14. Galli G (2014b) Foligno città romana Opuscolo, Città di Foligno, con contributi di Camerieri P, Galli, GGoogle Scholar
  15. Galli G (2015) Foligno città romana Ricerche storico-urbanistiche-topografiche, Segrate (MI), ItalyGoogle Scholar
  16. Giavarini C, Samuelli M, Ferretti A, Santarelli ML (2006) Mechanical characteristics of Roman opus caementicium. In: Kourkolis SK (ed) Fracture and failure of natural building stone. Springer, Dordrecht, pp 107–120CrossRefGoogle Scholar
  17. Jackson MD, Marra F (2006) Roman stone masonry: volcanic foundations of the ancient city. AJA 110:403–436CrossRefGoogle Scholar
  18. Jackson MD, Kosso C, Marra F, Hay R (2006) Geological basis of Vitruvius’ empirical observations of materials characteristics of rock utilized in Roman masonry. In: Dunkeld M, Campbell J, Louw H, Tutton M, Addis B, Thorne R (eds) Proceedings of the Second International Congress of Construction History Queen’s College, University of Cambridge 2: 1685–1702 London, The Construction History SocietyGoogle Scholar
  19. Jackson MD, Logan JM, Scheetz BE, Deocampo DM, Cawood CG, Marra F, Vitti M, Ungaro L (2009) Review: assessment of material characteristics of ancient concretes, Grande Aula, Markets of Trajan, Rome. JAS 36:2481–2492Google Scholar
  20. Jackson MD, Deocampo D, Marra F, Scheetz B (2010) Mid-Pleistocene pozzolanic volcanic ash in ancient Roman concretes. Geoarchaeology 25(1):36–74CrossRefGoogle Scholar
  21. La Russa MF, Ruffolo S, Ricca M, Rovella N, Comite V, Alvarez De Buergo M, Crisci GM, Barca D (2015) Archaeometric approach for the study of mortars from the underwater archaeological site of Baia (Naples) Italy: preliminary results. Periodico Mineral 84(3A):553–567Google Scholar
  22. Miriello D, Barca D, Bloise A, Ciarallo A, Crisci GM, De Rose T, Gattuso C, Gazineo F, La Russa MF (2010) Characterisation of archaeological mortars from Pompeii (Campania Italy) and identification of construction phases by compositional data analysis. JAS 37:2207–2223Google Scholar
  23. Moropoulou A, Bakolas A, Bisbikou A (2000) Investigation of the technology of historic mortars. J Cult Herit 1:45–58CrossRefGoogle Scholar
  24. Mota-López MI, Fort R, Álvarez De Buergo M, Pizzo A, Maderuelo-Sanz R, Meneses-Rodríguez JM, Ergenç D (2016) Characterization of concrete from roman buildings for public spectacles in Emerita Augusta (Mérida, Spain). Archaeol Anthropol Sci 1–16Google Scholar
  25. Özkaya ÖA, Böke H (2009) Properties of Roman bricks and mortars used in Serapis temple in the city of Pergamon. Mater Charact 60:995–1000CrossRefGoogle Scholar
  26. Pavia S, Caro S (2008) An investigation of Roman mortar technology through the petrographic analysis of archaeological material. Constr Build Mater 22:1807–1181CrossRefGoogle Scholar
  27. Pecchioni E, Fratini F, Cantisani E (2008) Le malte antiche e moderne: tra tradizione ed innovazione, Pàtron Editore BolognaGoogle Scholar
  28. Riccardi MP, Lezzerini M, Carò F, Franzini M, Messiga B (2007) Microtextural and microchemical studies of hydraulic ancient mortars: two analytical approaches to understand pre-industrial technology processes. J Cult Herit 8:350–360CrossRefGoogle Scholar
  29. Ricci Lucchi F (1980) Sedimentologia parte I: materiali e tessiture dei sedimenti, Clueb (Eds) BolognaGoogle Scholar
  30. Sànchez-Moral S, Luque L, Canaveras JC, Soler V, Garcia-Guinea J, Aparicio A (2004) Lime pozzolana mortars in Roman catacombs: composition structures and restoration. Cem Concr Res 35:1555–1565CrossRefGoogle Scholar
  31. Silva DA, Wenk HR, Monteiro PJM (2005) Comparative investigation of mortars from Roman Colosseum and cistern. Thermochim Acta 438:35–40CrossRefGoogle Scholar
  32. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30(5):377–392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, Ecology and Earth ScienceUniversity of CalabriaCosenzaItaly
  2. 2.Soprintendenza Speciale per i Beni Archeologici di RomaRomeItaly

Personalised recommendations