Advertisement

Contributing to characterise wild predator behaviour: consumption pattern, spatial distribution and bone damage on ungulate carcasses consumed by red fox (Vulpes vulpes)

Original Paper

Abstract

Neo-taphonomic studies of carnivores are commonly used to explain the formation processes of Pleistocene faunal assemblages. However, these works have been developed mostly with large carnivores—e.g. hyenas. On the contrary, small and medium-sized carnivores have been scarcely studied in spite of their presence in most of the archaeological sites. Here, we present a study trying to characterise the wild predator behaviour from a taphonomic perspective, describing consumption patterns on 23 small-sized ungulate carcasses eaten by red foxes (Vulpes vulpes) during a 2-year period in the Spanish Pyrenees. The aim of this work, therefore, is to characterise taphonomically this predator and to obtain data to distinguish them from other most common carnivores. For that, a combination of observational data from photo/video-trap and taphonomic analyses was compiled, allowing us to control variables like seasonality and time of consumption, as well as the spatial dispersion of skeletal remains. The initial interest by foxes lies in the disassembly of the anatomical elements and their transport to secluded places giving rise to dispersion of bones. Regarding to seasonality, bone modification increases at the end of winter/spring time, and proportionally, the time of consumption decreases. When the carcass is complete, viscera seem to be an important resource, followed by meat covering femur and humerus. This phenomenon causes significant damage on axial bones (mainly fractures and tooth marks), and to a lesser extent, on pelvis and proximal stylopodials.

Keywords

Taphonomy Actualism Animal behaviour Vulpes vulpes 

Notes

Acknowledgements

This research project was carried out thanks to the support of the Direcció General dels Agents Rurals (Direcció General de Forest, Departament d’Agricultura, Ramaderia, Pesca i Alimentació) of the Generalitat de Catalunya. This work was supported by the Spanish MINECO/FEDER projects CGL2015-65387-C3-1-P (J. Rosell) and CGL2015-68604-P (R. Blasco), the Generalitat de Catalunya-AGAUR projects 2014 SGR 900 and 2014/100573, and the SENECA Foundation project 19434/PI/14. M. Arilla is the beneficiary of a research fellowship (FI) from AGAUR (2017FI-B-00096). We thank Raquel Pérez Martínez for her help with geographical information system and data recovery, Jordi Fàbregas for his comments and very useful help with fieldwork, and Robert Romero (Rasca) for editing videos.

Supplementary material

12520_2018_675_MOESM1_ESM.xls (38 kb)
Table S1 Number of observations by fox characteristics, presence of other carnivores and features of consumed ungulates. (XLS 38 kb)
12520_2018_675_MOESM2_ESM.mov (47.5 mb)
Video S1 Start of the consumption process showing the approach of foxes to the carcass and first contact (OB.17). (MOV 48652 kb)
12520_2018_675_MOESM3_ESM.mov (109.9 mb)
Video S2 Accelerated sequence of viscera consumption leading to axial bone damage (OB. 20). (MOV 112518 kb)
Video S3

Removal and transport of an appendicular element (OB. 3). (MOV 47863 kb)

12520_2018_675_MOESM5_ESM.mov (109.2 mb)
Video S4 An accelerated sequence of a fox feeding on appendicular skeleton (OB. 20–22). (MOV 111857 kb)

References

  1. Andrés M, Gidna AO, Yravedra J, Domínguez-Rodrigo M (2012) A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnívores. Archaeol Anthropol Sci 4:209–219CrossRefGoogle Scholar
  2. Andrews P, Fernández-Jalvo (1997) Surface modifications of the Sima de los Huesos fòssil humans. J Hum Evol 33(2/3):191–216CrossRefGoogle Scholar
  3. Arilla M, Rosell J, Blasco R, Domínguez-Rodrigo M, Pickering TR (2014) The “bear” essentials: Actualistic research on Ursus arctos arctos in the Spanish Pyrenees and its implications for paleontology and archaeology. PLoS One 9(7):e102457CrossRefGoogle Scholar
  4. Binford LR (1981) Bones: ancient men and modern myths, vol 320. Academic Press, New YorkGoogle Scholar
  5. Blumenschine RJ (1995) Percussion marks, tooth marks, and experimental determinations of the timing of hominid an carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J Hum Evol 29:21–51CrossRefGoogle Scholar
  6. Borrero LA (1990) Taphonomy of guanaco bones in Tierra del Fuego. Quat Res 34:361–371CrossRefGoogle Scholar
  7. Bunn HT (1982) Meat-eating and human evolution: studies on the diet and subsistence patterns of Plio- Pleistocene hominids in East Africa. Ph.D. thesis. University of California, BerkeleyGoogle Scholar
  8. Cagnacci F, Lovari S, Meriggi A (2009) Carrion dependence and food habits of the red fox in an alpine area. Ital J Zool 70(1):31–38CrossRefGoogle Scholar
  9. Camarós E, Cueto M, Teira LC, Tapia J, Cubas M, Blasco R, Rosell J, Rivals F (2013) Large carnivores as taphonomic agents of space modification: an experimental approach with archaeological implications. J Archaeol Sci 40:1361–1368CrossRefGoogle Scholar
  10. Camarós E, Cueto M, Teira L, Münzel SC, Plassard F, Arias P, Rivals F (2015) Bears in the scene: Pleistocene complex interactions with implications concerning the study of Neanderthal behavior. Quat Int 435:237–246CrossRefGoogle Scholar
  11. Careau V, Giroux JF, Berteaux D (2007) Cache and carry: hoarding behavior of arctic fox. Behav Ecol Sociobiol 62:87–96CrossRefGoogle Scholar
  12. Charnov E (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9(2):129–136CrossRefGoogle Scholar
  13. Cochard D (2008) Discussion about the intrareferential variability of bone accumulations produced by small predators. Annales de Paléontologie 94:89–101CrossRefGoogle Scholar
  14. Cruz-Uribe K (1991) Distinguishing hyena from hominid bone accumulations. J Field Archaeol 18(4):467–486Google Scholar
  15. Delpech F (1983) Les faunes du Paléolithique Supérieur dans le sudouest de la France. IPH, CNRS, ParisGoogle Scholar
  16. Domínguez-Rodrigo M (1999) Flesh availability and bone modification in carcasses consumed by lions. Palaeogeogr Palaeoclimatol Palaeoecol 149:373–388CrossRefGoogle Scholar
  17. Fedriani JM (1996) Dieta anual del Zorro, Vulpes vulpes, en dos hábitats del Parque Nacional de Doñana. Acta Vertebrata 23(2):143–152Google Scholar
  18. Fernández PM, Cruz I, Forlano A (2010) Sitio 37: una madriguera de carnívoro en el norte de la Patagonia Andina (Cholila, Provincia de Chubut, Argentina). In: Gutiérrez MA, Nigris M, Fernández PM, Giardina M, Gil AF, Izeta A, Neme G, Yacobaccio ED (eds) Zooarqueología a principios del siglo XXI: aportes teóricos, metodológicos y casos de estudio. Libros del Espinillo, Buenos Aires, pp 409–417Google Scholar
  19. Fernández-Jalvo Y, Andrews P (2011) When humans chew bones. J Hum Evol 60:117–123CrossRefGoogle Scholar
  20. Gidna A, Yravedra J, Domínguez-Rodrigo M (2013) A cautionary note on the use of captive carnivores to model wild predator behaviour: a comparison of bone modification patterns on long bones by captive and wild lions. J Archaeol Sci 40:1903–1910CrossRefGoogle Scholar
  21. Goszczyński J (1974) Studies on the food of foxes. Acta Theriol 19:1–18CrossRefGoogle Scholar
  22. Haynes G (1980) Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology 6:341–351CrossRefGoogle Scholar
  23. Haynes G (1983) A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9:164–172CrossRefGoogle Scholar
  24. Haynes G (1988) Spiral fractures, cutmarks and other myths about early bone assemblages. Anthropol Paper Am Mus Nat Hist 21:145–151Google Scholar
  25. Krajcarz M, Krajcarz MT (2014) The red fox (Vulpes vulpes) as an accumulator of bones in cave-like environments. Int J Osteoarchaeol 24:459–475CrossRefGoogle Scholar
  26. Lloveras L, Moreno-García M, Nada J (2012) Feeding the foxes: an experimental study to assess their taphonomic signature on Leporid remains. Int J Osteoarchaeol 22(5):577–590CrossRefGoogle Scholar
  27. Lloveras L1, Thomas R, Cosso A, Pinyol C, Nadal J (2016) When wildcats feed on rabbits: an experimental study to understand the taphonomic signature of European wildcats (Felis silvestris silvestris). Archaeol Anthropol Sci 10:449–464.  https://doi.org/10.1007/s12520-016-0364-6 CrossRefGoogle Scholar
  28. Maguire JM, Pemberton D, Collett MH (1980) The Makapansgat limeworks grey breccia: hominids, hyaenas, hystricids or hillwash. Palaeontol Afr 23:75–98Google Scholar
  29. Mallye JB, Cochard D, Laroulandie V (2008) Bone accumulation around small carnivores burrows: carnivores modifications. Annales de Paléontologie 94:187–208CrossRefGoogle Scholar
  30. Marean CW, Spencer LM (1991) Impact of carnivore ravaging on zooarchaeological measures of element abundance. Am Antiq 56(4):645–658CrossRefGoogle Scholar
  31. Mondini NM (1995) Artiodactyl prey transport by foxes in Puna rock shelter. Curr Anthropol 36:520–524CrossRefGoogle Scholar
  32. Mondini NM (2009) Tafonomía de carnívoros, las primeras ocupaciones humanas de la Puna, y el contexto de las investigaciones tafonómicas en Argentina. In: Oliva F, Grabdis N, Rodríguez J (eds) Arqueología Argentina en los Inicios de un Nuevo Siglo. Publicación del XIV Congreso Nacional de Arqueología Argentina, 2, XVII. Laborde Libros Editor, Rosario, pp 527–537Google Scholar
  33. Nagaoka L (2015) Differential carnivore damage as a potential indicator of resource availability and foraging efficiency. J Archaeol Method Theory 22(3):828–856CrossRefGoogle Scholar
  34. Nasti A (2000) Modification of vicuña carcasses in high-altitudes deserts. Curr Anthropol 41:279–283Google Scholar
  35. Pickering TR, Wallis J (1997) Bone modifications resulting from captive chimpanzee mastication: implications for the interpretation of Pliocene archaeological faunas. J Archaeol Sci 24(12):1115–1127CrossRefGoogle Scholar
  36. Pickering TR, Domínguez-Rodrigo M, Heaton JL, Yravedra J, Barba R, Bunn HT, Musiba C, Baquedano E, Diez-Martín F, Mabulla A, Brain CK (2013) Taphonomy of ungulate ribs and the consumption of meat and bone by 1.2-million-year-old hominins at Olduvai Gorge, Tanzania. J Archaeol Sci 40:1295–1309CrossRefGoogle Scholar
  37. Pokines JT, Kerbis Peterhans JC (2007) Spotted hyena (Crocuta crocuta) den use and taphonomy in the Maasai Mara National Reserve, Kenya. J Archaeol Sci 34(11):1914–1931CrossRefGoogle Scholar
  38. Rodríguez-Hidalgo A, Lloveras L, Moreno-García M, Saladié P, Canals A, Nadal J (2013) Feeding behaviour and taphonomic characterization of non-ingested rabbit remains produced by the Iberian lynx (Lynx pardinus). J Archaeol Sci 40:3031–4045CrossRefGoogle Scholar
  39. Rodríguez-Hidalgo A, Saladié P, Marín J, Canals A (2015) Expansion of the referential framework for the rabbit fossil accumulations generated by Iberian lynx. Palaeogeogr Palaeoclimatol Palaeoecol 418:1–11CrossRefGoogle Scholar
  40. Sala N, Arsuaga JL, Haynes G (2014) Taphonomic comparison of bone modifications caused by wild and captive wolves (Canis lupus). Quat Int 330:126–135CrossRefGoogle Scholar
  41. Saladié P, Huguet R, Díez C, Rodríguez-Hidalgo A, Carbonell E (2013) Taphonomic modifications produced by modern brown bears (Ursus arctos). Int J Osteoarchaeol 23:13–33CrossRefGoogle Scholar
  42. Sklepkovychi BO, Montevecchi VA (1996) Food availability and food hoarding behaviour by red and arctic foxes. Artic 49(3):228–234Google Scholar
  43. Stimpson C, Lister A, Parton A, Clark-Balzan L, Breeze P, Drake N, Groucutt H, Jennings R, Scerri E, White T, Zahir M, Duval M, Grün R, Al-Omari A, Al Murayyi K, Zalmout I, Mufarreh Y, Memesh A, Petraglia M (2016) Middle Pleistocene vertebrate fossils from the Nefud Desert, Saudi Arabia: implications for biogeography and palaeoecology. Quat Sci Rev 143:13–36CrossRefGoogle Scholar
  44. Stiner MC (1994) Honor among thieves: a zooarchaeological study of neandertal ecology. Princeton University Press, PrincetonGoogle Scholar
  45. Vander Wall SB (1990) Food hoarding in animals. The University of Chicago Press, ChicagoGoogle Scholar
  46. Weaver TD, Boyko RH, Steele TE (2011) Cross-platform program for likelihood-based statistical comparisons of mortality profiles on a triangular graph. J Archaeol Sci 38:2420–2423CrossRefGoogle Scholar
  47. White TD (1992) Prehistoric cannibalism at Mancos 5MTURM-2346. Princeton University Press, PrincetonGoogle Scholar
  48. Young A, Márquez-Grant N, Stillman R, Smith MJ, Korstjens AH (2015a) An investigation of red fox (Vulpes vulpes) and Eurasian badger (Meles meles) scavenging, scattering, and removal of deer remains: forensic implications and applications. J Forensic Sci 60(1):39–55CrossRefGoogle Scholar
  49. Young A, Strillman R, Smith AJ, Korstjens AH (2015b) Scavenger species-typical alteration to bone: using bite mark dimensions to identify scavengers. J Forensic Sci 60(6):1426–1435CrossRefGoogle Scholar
  50. Yravedra J (2001) Zooarqueológica de la Península Ibérica. Implicaciones Tafonómicas y Paleoecológicas en el debate de los homínidos del Pleistoceno Superior. British Archaeological Reports International Series 979, OxfordGoogle Scholar
  51. Yravedra J, Andrés M, Fosse P, Besson JP (2014) Taphonomic analysis of small ungulates modified by fox (Vulpes vulpes) in southwestern Europe. J Taphon 12(1):37–67Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IPHESInstitut Català de Palaeoecologia Humana i Evolució SocialTarragonaSpain
  2. 2.Àrea de PrehistòriaUniversitat Rovira i Virgili (URV)TarragonaSpain
  3. 3.Centro Nacional de Investigación sobre la Evolución Humana (CENIEH)BurgosSpain

Personalised recommendations