Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 2, pp 409–432 | Cite as

Mesolithic human occupation and seasonality: sclerochronology, δ18O isotope geochemistry, and diagenesis verification by Raman and LA-ICP-MS analysis of Argyrosomus regius (meagre) sagittae otoliths from layer 1 of Cabeço da Amoreira Mesolithic shell midden (Muge, Portugal)

  • Rita DiasEmail author
  • Juan Estrella-Martínez
  • Paul Butler
  • Alexandra Nederbragt
  • Ian R. Hall
  • Pedro Barrulas
  • Anne France Maurer
  • Ana Mafalda Cardeira
  • José Mirão
  • Cleia Detry
  • Nuno Bicho
Original Paper

Abstract

We present preliminary sclerochronological analysis on 15 Argyrosomus regius (meagre) otoliths collected from two different human occupation levels from the Cabeço da Amoreira shell midden (Muge valley, Portugal). The otoliths were sectioned and observed under a reflected light stereomicroscope to examine seasonal growth rings. Carbonates collected from individual growth rings subsampled with a micromill sampling device were analyzed for their stable oxygen isotope content with the objective of determining the predominant season of capture and therefore season of site use, environmental conditions, and sites of resource procurement (local versus regional). The otoliths’ stable isotope records show clear seasonality and a season of capture estimate that seems consistent with a “good season” (warmer season, i.e., from spring to late summer/beginning of autumn in this area) site use in the last occupation layer (the great majority of otoliths are from layer 1), except for four samples giving heaver oxygen isotope (δ18O) values that suggest colder conditions and only one with markedly positive δ18O values. Potential effect of diagenesis on the otolith records was also assessed through coupled laser ablation–inductively coupled plasma mass spectrometry (LA-ICP-MS) and by micro-X-Ray diffraction (μ-XRD). Results revealed the presence of only aragonite and no traces of calcite, providing no evidence of diagenesis that could significantly alter isotope results and lead to erroneous interpretations. The implications of these results are discussed and compared with data from other archeological sites, as well as data from micromorphology regarding continuity or interruption of site use and other faunal remains.

Keywords

Otoliths Seasonality Mesolithic Shell middens Argyrosomus regius Diagenesis 

Notes

Acknowledgements

The National Portuguese Foundation for Science and Technology (Portugal) funded the 2008-2011 Last Hunter-gatherers of the Tagus Valley–The Muge Shell Middens (PTDC/HAH/64185/2006)” project and the 2011-2014 “The last hunter-gatherers of Muge (Portugal): the origins of social complexity (PTDC/HIS- ARQ/112156/2009)” project whose P.I. is Nuno Bicho.

The Archaeological Institute of America that funded the “Mesolithic shell midden exploitation: Sclerochronology analysis from the Cabeço de Amoreira (SW Iberia, Portugal)” project, through the Archaeology of Portugal Program given to Rita Dias.

The ICArEHB-Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour is acknowledged, in the University of Algarve, for partially funding the isotope analysis with funding from FCT (UID/ARQ/04211/2013).

We would also like to thank Stella Alexandroff for her invaluable help in the Sclerolab and Professor Chris Richardson for his time and advice in establishing a methodology, both at the University of Bangor, Wales, UK.

References

  1. Aldeias V, Bicho N (2016) Embedded behavior: human activities and the construction of the Mesolithic Shellmound of Cabeço da Amoreira, Muge, Portugal. Geoarchaeology 31(6):530–549.  https://doi.org/10.1002/gea.21573 Google Scholar
  2. Andrus CFT (2011) Shell midden sclerochronology. Quat Sci Rev 30(21-22):2892–2905.  https://doi.org/10.1016/j.quascirev.2011.07.016 Google Scholar
  3. Araújo AC, Almeida F (2013) Barca do Xerez de Baixo, um testemunho invulgar das últimas comunidades de caçadores recolectores do Alentejo interior. In: Araújo AC, Almeida F (eds) Memórias do’Odiana. 2a Série Estudos Arqueológicos Do Alqueva. Câmara Municipal de Beja, Beja, pp 327–332Google Scholar
  4. Arnaud JM (1986) O Cabeço das Amoreiras. S Romão do Sado Informação Arqueol 7:80–82Google Scholar
  5. Arnaud JM (1987) Os concheiros mesoliticos dos vales do Tejo e do Sado: semelhanças e diferenças. Arqueologia 15:53–64Google Scholar
  6. Arnaud JM (1993) O Mesolítico e a neolitização. Balanço e perspectivas. In: Carvalho GS, Ferreira AB, de Senna-Martinez J (eds) O Quaternário Em Portugal. Balanços E Perspectivas. Edições Colibri, Lisboa, pp 173–184Google Scholar
  7. Arnold JE (1996) The archaeology of complex hunter-gatherers. J Archaeol Method Theory 3(1):77–126.  https://doi.org/10.1007/BF02228931 Google Scholar
  8. Athayde A (1940) Novos esqueletos humanos dos concheiros mesolíticos de Muge. In: Português CDM (ed) Lisboa. Comissão Executiva dos Centenários, Lisboa, pp 627–651Google Scholar
  9. Bard E, Arnold M, Maurice P, Duprat J, Moyes J, Duplessy J-C (1987) Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature 328(6133):791–794.  https://doi.org/10.1038/328791a0 Google Scholar
  10. Beamish RJ, McFarlane GA (1983) Validation of age determination estimates: the forgotten requirement. In: Prince ED, Pulos LM (eds) Proceedings of the International Workshop on Age Determination of Oceanic Pelagic Fishes: Tunas, Billfishes, and Sharks. National Oceanic and Atmospheric Administration and U.S. Department of Commerce, Miami, pp 29–34Google Scholar
  11. Begg GA, Campana SE, Bowler AJ, Suthers IM (2005) Otolith research and application: current directions in innovation and implementation. Mar Freshw Res 56(5):477–483.  https://doi.org/10.1071/MF05111 Google Scholar
  12. Benito G, Sopeña A, Sánchez-Moya Y, Machado MJ, Pérez-González A (2003) Palaeoflood record of the Tagus River (Central Spain) during the Late Pleistocene and Holocene. Quat Sci Rev 22(15–17):1737–1756.  https://doi.org/10.1016/S0277-3791(03)00133-1 Google Scholar
  13. Benito G, Thorndycraft VR, Rico M, Sánchez-Moya Y, Sopeña A (2008) Palaeoflood and floodplain records from Spain: evidence for long-term climate variability and environmental changes. Geomorphology 101(1–2):68–77.  https://doi.org/10.1016/j.geomorph.2008.05.020 Google Scholar
  14. Bicho N (1994) The end of the Paleolithic and the Mesolithic in Portugal. Curr Anthropol 35(5):664–674.  https://doi.org/10.1086/204328 Google Scholar
  15. Bicho N (2003) A importância dos recursos aquáticos na economia dos caçadores-recolectores do Paleolítico e Epipaleolítco do Algarve. Xelb 4:11–26Google Scholar
  16. Bicho N (2009) Sistemas de povoamento, subsistência e relações sociais dos últimos caçadores-recolectores do Vale do Tejo. Estud Arqueol Oeiras 17:133–156Google Scholar
  17. Bicho N, Gonçalves C (2016) Back to the past: the emergence of social differentiation in the Mesolithic of Muge, Portugal. In: The Eighth International Conference on the Mesolithic in Europe Santander from 13th to 17th September 2010. Cantabrian International Institute for Prehistoric Research,SantanderGoogle Scholar
  18. Bicho N, Haws J (2008) At the land’s end: marine resources and the importance of fluctuations in the coastline in the prehistoric hunter–gatherer economy of Portugal. Quat Sci Rev 27(23-24):2166–2175.  https://doi.org/10.1016/j.quascirev.2008.08.011 Google Scholar
  19. Bicho N, Umbelino C, Detry C, Pereira T (2010) The emergence of Muge Mesolithic Shell Middens in Central Portugal and the 8200 cal yr BP cold event. J Isl Coast Archaeol 5(1):86–104.  https://doi.org/10.1080/15564891003638184 Google Scholar
  20. Bicho N, Cascalheira J, Marreiros J, Pereira T (2011) The 2008-2010 excavations of Cabeço da Amoreira, Muge. Portugal Mesolith Misc 21:3–13Google Scholar
  21. Bicho N, Cascalheira J, Gibaja J, Manne T, Marreiros J, Mendonça C, Pereira T, Regala F (2009) Identidade e adaptação: a ocupação humana durante o Plistocénico Final no Algarve Ocidental. In: VII Reunião Do Quaternário Ibérico. Faro, pp 171–174Google Scholar
  22. Bicho N, Cascalheira J, Marreiros J, Gonçalves C, Pereira T, Dias R (2013) Chronology of the Mesolithic occupation of the Muge valley, central Portugal: the case of Cabeço da Amoreira. Quat Int 308–309:130–139.  https://doi.org/10.1016/j.quaint.2012.10.049 Google Scholar
  23. Bond G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278(80):1257–1266.  https://doi.org/10.1126/science.278.5341.1257 Google Scholar
  24. Brewer DJ (1987) Seasonality in the prehistoric Faiyum based on the incremental growth structures of the Nile catfish (Pisces: Clarias). J Archaeol Sci 14(5):459–472.  https://doi.org/10.1016/0305-4403(87)90032-X Google Scholar
  25. Bronk Ramsey C (1995) Radiocarbon calibration and analysis of stratigraphy. Radiocarbon 37(1):425–430Google Scholar
  26. Butler PG, Scourse JD, Richardson CA, Wanamaker AD Jr, Bryant CL, Bennell JD (2009) Continuous marine radiocarbon reservoir calibration and the 13C Suess effect in the Irish Sea: results from the first multi-centennial shell-based marine master chronology. Earth Planet Sci Lett 279(3-4):230–241.  https://doi.org/10.1016/j.epsl.2008.12.043 Google Scholar
  27. Cacho I, Grimalt JO, Pelejero C, Canals M, Sierro FJ, Flores JA, Shackleton N (1999) Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanography 14(6):698–705.  https://doi.org/10.1029/1999PA900044 Google Scholar
  28. Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59(2):197–242.  https://doi.org/10.1006/jfbi.2001.1668 Google Scholar
  29. Campana SE, Neilssra D (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42(5):1014–1032.  https://doi.org/10.1139/f85-127 Google Scholar
  30. Campana SE, Annand MC, McMillan JI (1995) Graphical and statistical methods for determining the consistency of age determinations. Trans Am Fish Soc 124(1):131–138.  https://doi.org/10.1577/1548-8659(1995)124<0131:GASMFD>2.3.CO;2 Google Scholar
  31. Cardoso JL, Rolão JM (1999) Prospecções e escavações nos concheiros mesolíticos de Muge e de Magos (Salvaterra de Magos): Contribuição para a história dos trabalhos arqueológicos efectuados. Estud. Arqueol. Oeiras 8:306–357Google Scholar
  32. Casselman JM (1983) Age and growth assessment of fish from their calcified structures—techniques and tools. In: Prince ED, Lynn MP (eds) Proceedings of the International Workshop on Age Determination of Oceanic Pelagic Fishes: Tunas, Billfishes, and Sharks. National Oceanic and Atmospheric Administration and U.S. Department of Commerce, Miami, pp 1–18Google Scholar
  33. Casteel RW (1976) Fish remains in archaeology. Academic Press, LondonGoogle Scholar
  34. Casteel RW (2011) Society for American Archaeology Some archaeological uses of fish remains. Am Antiq 37:404–419Google Scholar
  35. Cearreta A, Cachão M, Cabral MC, Bao R, de Jesus Ramalho M (2003) Lateglacial and Holocene environmental changes in Portuguese coastal lagoons 2: microfossil multiproxy reconstruction of the Santo André coastal area. The Holocene 13(3):447–458.  https://doi.org/10.1191/0959683603hl637rp Google Scholar
  36. Chao LN, Trewavas E (1990) Scieaenidae. In: Quero JC, Hureau JC, Karrer C, Post A, Saldanha L (eds) Check-list of the fishes: the eastern tropical Atlantic (CLOFETA). JNICT/SEI/UNESCO, Paris, pp 813–826Google Scholar
  37. Colonese AC, Troelstra S, Ziveri P, Martini F, Lo Vetro D, Tommasini S (2009) Mesolithic shellfish exploitation in SW Italy: seasonal evidence from the oxygen isotopic composition of Osilinus turbinatus shells. J Archaeol Sci 36(9):1935–1944.  https://doi.org/10.1016/j.jas.2009.04.021 Google Scholar
  38. Colonese AC, Verdún-Castelló E, Álvarez M, Briz I, Godino I, Zurro D, Salvatelli L (2012) Oxygen isotopic composition of limpet shells from the Beagle Channel: implications for seasonal studies in shell middens of Tierra del Fuego. J Archaeol Sci 39(6):1738–1748.  https://doi.org/10.1016/j.jas.2012.01.012 Google Scholar
  39. da Conceição Freitas M, Andrade C, Rocha F, Tassinari C, Munhá JM, Cruces A, Vidinha J, Marques da Silva C (2003) Lateglacial and Holocene environmental changes in Portuguese coastal lagoons 1: the sedimentological and geochemical records of the Santo André coastal area. The Holocene 13(3):433–446.  https://doi.org/10.1191/0959683603hl636rp Google Scholar
  40. Conyers L, Bicho N, Daniels M, Elliot K, Castro G, Cascalheira J, Gonçalves C (2013) Ground-penetrating radar mapping at the Mesolithic Muge Shell Mound, Portugal. In: Muge 150th. 150th Anniversary of the Discovery of the Mesolithic ShellmiddensGoogle Scholar
  41. Cook PK, Languille M-A, Dufour E, Mocuta C, Tombret O, Fortuna F, Bertrand L (2015) Biogenic and diagenetic indicators in archaeological and modern otoliths: potential and limits of high definition synchrotron micro-XRF. Chem. Geol 414:1–15.  https://doi.org/10.1016/j.chemgeo.2015.08.0170009-2541 Google Scholar
  42. Costa MJ (1999) O Estuário do Tejo. Livros Cotovia, ViseuGoogle Scholar
  43. Costa Tenorio M, Morla Juaristi C, Sainz Ollero H (2005) Los bosques ibéricos, una interpretación geobotánica. Editorial Planeta, BarcelonaGoogle Scholar
  44. Cunha E, Umbelino C (1995) Abordagem antropológica das comunidades mesolíticas dos concheiros do Sado. O Arqueólogo Port Série IV:161–179Google Scholar
  45. Cunha E, Cardoso F, Umbelino C (2003) Inferences about Mesolithic lifestyle on the basis of anthropological data. In: Larsson L, Kindgren H, Knutsson K, Loeffler D, Akerlund A (eds) The case of the Portuguese shell middens. Mesolithic on the move, Oxford, pp 184–188Google Scholar
  46. da Assis CAS (2000) Estudo Morfológico dos Otólitos Saggita, Asteriscus e Lapillus de Teleósteos (Actinopterygii, Teleostei) de Portugal Continental. Sua Aplicação em Estudos de Filogenia Sistemática e Ecologia. Ecologia. Faculdade de Ciências da Universidade de LisboaGoogle Scholar
  47. Davis Ba S, Brewer S, Stevenson AC, Guiot J (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22(15-17):1701–1716.  https://doi.org/10.1016/S0277-3791(03)00173-2 Google Scholar
  48. Detry, C., 2000. Estudo Arqueozoológico dos Concheiros de Muge. Relatório de estágio profissionalizante da Licenciatura em Biologia Aplicada aos Recursos Animais - Variante Terrestres. LisboaGoogle Scholar
  49. Detry C (2007) Paleoecologia e Paleoeconomia do Baixo Tejo no Mesolítico Final: O contributo do estudo dos mamíferos dos concheiros de Muge Paleoecologia e Paleoeconomia do Baixo Tejo no Mesolítico Final: O contributo do estudo dos mamíferos dos concheiros de Muge Cle. Historia Santiago. PhD thesis. Universidade de Salamanca e Universidade Autónoma de LisboaGoogle Scholar
  50. Detry C (2008) Vertebrates from Cabeço dos Morros: a Mesolithic shell midden near Salvaterra de Magos, in the lower Tagus valley, Portugal. PRO 6:51–70Google Scholar
  51. Dias R, Cascalheira J, Gonçalves C, Detry C, Bicho N (2012) Preliminary analysis of the spatial relationships between faunal and lithic remains on the Mesolithic Shelmidden of Cabeço da Amoreira (Muge, Portugal). In: Campar Almeida A, Bettencourt AMS, Moura D, Monteiro-Rodrigues S, Alves MIC (eds) Mudanças Ambientais E Interacção Humana Na Fachada Atlântica occidental/environmental change and human interaction in the western Atlantic Façade. APEQ, Coimbra, pp 159–164Google Scholar
  52. Dias R, Detry C, Pereira A (2015) What’s new? The animal remains from Cabeço da Amoreira from the 2008-2012 campaigns. In: Bicho N, Detry C, Price DT, Cunha E (Eds) Muge 150th. 150th Anniversary of the Discovery of the Mesolithic Shellmiddens. Cambridge Scholars Publishing, Cambridge, pp 105–118Google Scholar
  53. Dias R, Detry C, Bicho N (2016) Changes in the exploitation dynamics of small terrestrial vertebrates and fish during the Pleistocene-Holocene transition in the SW Iberian Peninsula: a review. The Holocene 26(6):964–984.  https://doi.org/10.1177/0959683615622547 Google Scholar
  54. Disspain M, Wallis LA, Gillanders BM (2011) Developing baseline data to understand environmental change: a geochemical study of archaeological otoliths from the Coorong, South Australia. J Archaeol Sci 38(8):1842–1857.  https://doi.org/10.1016/j.jas.2011.03.027 Google Scholar
  55. Disspain MCF, Ulm S, Gillanders BM (2015) Otoliths in archaeology: methods, applications and future prospects. J Archaeol Sci Reports 6:623–632.  https://doi.org/10.1016/j.jasrep.2015.05.012 Google Scholar
  56. Dufour E, Cappetta H, Denis A, Dauphin Y, Mariotti A (2000) La diagenese des otolithes par la comparaison des donnees microstructurales, mineralogiques et geochimiques; application aux fossiles du Pliocene du Sud-Est de la France. Bull la Soc Geol Fr 171(5):521–532.  https://doi.org/10.2113/171.5.521 Google Scholar
  57. Dupont C (2016) Could occupation duration be related to the diversity of faunal remains in Mesolithic shell middens along the European Atlantic seaboard? Quat Int 407:145–153.  https://doi.org/10.1016/j.quaint.2016.01.039 Google Scholar
  58. Dupont C, Tresset A, Desse-Berset N, Gruet Y, Marchand G, Schulting R (2009) Harvesting the seashores in the late Mesolithic of northwestern Europe: a view from Brittany. J World Prehistory 22(2):93–111.  https://doi.org/10.1007/s10963-009-9017-3 Google Scholar
  59. Figueiral I (1993) Cabeço de Porto Marinho: une approche paléoécologique. Premires résultats. In: Fumanal MP, Bernabeu J (eds) Estudios Sobre Cuaternario. Associacón Española para el estudio del Cuaternario, Valência, pp 167–172Google Scholar
  60. Figueiral I, Carcaillet C (2005) A review of Late Pleistocene and Holocene biogeography of highland Mediterranean pines (Pinus type sylvestris) in Portugal, based on wood charcoal. Quat Sci Rev 24(23-24):2466–2476.  https://doi.org/10.1016/j.quascirev.2005.02.004 Google Scholar
  61. Figueiral I, Terral J-F (2002) Late Quaternary refugia of Mediterranean taxa in the Portuguese Estremadura: charcoal based palaeovegetation and climatic reconstruction. Quat Sci Rev 21(4-6):549–558.  https://doi.org/10.1016/S0277-3791(01)00022-1 Google Scholar
  62. Figueiredo O, Cascalheira J, Dias R, Gonçalves C, Marreiros J, Monteiro P, Paixão E, Pereira T, Umbelino C, Bicho N n.d. A multidisciplinary approach to death: the studycase of Cabeço da Amoreira (Muge, Portugal). In: Proceedings of the IV Conference of Young Researchers in Archaeology (Barcelona, 2013). BarcelonaGoogle Scholar
  63. Figueiredo O, Gonçalves C, Cascalheira J, Marreiros J, Umbelino C, Bicho NF (2015) The importance of new methodologies for the study of funerary practices: The case of Cabeço da Amoreira, a mesolithic shellmidden (Muge, Portugal). In: Bicho N, Detry C, Cunha E, Price DT (eds) Muge 150th. 150th Anniversary of the Discovery of the Mesolithic Shellmiddens. Cambridge Schoolars Publishing, CambridgeGoogle Scholar
  64. Fletcher WJ (2005) Holocene landscape history of southern Portugal. University of CambridgeGoogle Scholar
  65. Fletcher WJ, Sánchez Goñi MF, Allen JRM, Cheddadi R, Combourieu-Nebout N, Huntley B, Lawson I, Londeix L, Magri D, Margari V, Müller UC, Naughton F, Novenko E, Roucoux K, Tzedakis PC (2010) Millennial-scale variability during the last glacial in vegetation records from Europe. Quat Sci Rev 29(21-22):2839–2864.  https://doi.org/10.1016/j.quascirev.2009.11.015 Google Scholar
  66. Foster LC, Andersson C, Høie H, Allison N, Finch AA, Johansen T (2008) Effects of micromilling on δ 18 O in biogenic aragonite. Geochem Geophys Geosyst 9:n/a–n/a.  https://doi.org/10.1029/2007GC001911 Google Scholar
  67. Frigola J, Moreno A, Cacho I, Canals M, Sierro FJ, Flores JA, Grimalt JO, Hodell DA, Curtis JH (2007) Holocene climate variability in the western Mediterranean region from a deepwater sediment record. Paleoceanography 22(2).  https://doi.org/10.1029/2006PA001307
  68. Gabriel S (2007) A exploração dos recursos ictíicos. In: Araújo AC (ed) O Concheiro de Toledo No Contexto Do Mesolítico Inicial Do Litoral Da Estremadura. Instituto Português de Arqueologia, Lisbon, pp 127–145Google Scholar
  69. Gabriel S (2011) A exploração dos recursos ictíicos. In: Araújo AC (ed) O Concheiro de Toledo No Contexto Do Mesolítico Inicial Do Litoral Da Estremadura, Trabalhos de Arqueologia, vol 51. IGESPAR, Lisboa, pp 127–143Google Scholar
  70. Gabriel S (2015) La Ictiofauna del Holoceno Inicial y Medio de Portugal. Implicaciones tafonómicas, ecológicas y culturales. Universidad Autonoma de MadridGoogle Scholar
  71. Gabriel S, Detry C, Pimenta C (2010) Azenha de Santa Cruz (Torres Vedras). Estudo Arqueozoológico. (Not Published)Google Scholar
  72. Gabriel S, Prista N, Costa MJ (2012) Estimating meagre (Argyrosomus regius) size from otoliths and vertebrae. J Archaeol Sci 39(9):2859–2865.  https://doi.org/10.1016/j.jas.2012.04.046 Google Scholar
  73. Gonçalves, C., 2009. Modelos preditivos da SIG na localização de sítios arqueológicos de cronologia mesolítica no Vale do Tejo. Universidade do AlgarveGoogle Scholar
  74. Gonçalves C, Cascalheira J, Bicho N (2014) Shellmiddens as landmarks: Visibility studies on the Mesolithic of the Muge valley (Central Portugal). J Anthropol Archaeol 36:130–139.  https://doi.org/10.1016/j.jaa.2014.09.011 Google Scholar
  75. Griffiths MH, Hecht T (1995) Age and growth of South African dusky kob Argyrosomus japonicus (Scianidae) based on otoliths. South African J Mar Sci 16(1):119–128.  https://doi.org/10.2989/025776195784156548 Google Scholar
  76. Gutiérrez-Zugasti I, Andersen SH, Araújo AC, Dupont C, Milner N, Monge-Soares AM (2011) Shell midden research in Atlantic Europe: state of the art, research problems and perspectives for the future. Quat Int 239(1-2):70–85.  https://doi.org/10.1016/j.quaint.2011.02.031 Google Scholar
  77. Haws, J.A., 2003. An investigation of Late Upper Paleolithic and Epipaleolithic hunter-gatherer subsistence and settlement patterns in Central Portugal. University of Wisconsin-MadisonGoogle Scholar
  78. Haws J, Valente MJ (2006) Animal carcass utilization during the late upper Paleolithic occupation of Lapa do Suão (Portugal). In: Haws J, Brugal J-P, Hockett B (eds) Paleolithic zooarchaeology in practice. S1954. BAR International Series. Archaeopress, Oxford, pp 29–37Google Scholar
  79. Higham TF, Horn P (2000) Seasonal dating using fish otoliths: results from the Shag River Mouth Site, New Zealand. J Archaeol Sci 27(5):439–448.  https://doi.org/10.1006/jasc.1999.0473 Google Scholar
  80. Hoie H, Folkvord A (2006) Estimating the timing of growth rings in Atlantic cod otoliths using stable oxygen isotopes. J Fish Biol 68(3):826–837.  https://doi.org/10.1111/j.0022-1112.2006.00957.x Google Scholar
  81. Hufthammer AK, Høie H, Folkvord A, Geffen AJ, Andersson C, Ninnemann US (2010) Seasonality of human site occupation based on stable oxygen isotope ratios of cod otoliths. J Archaeol Sci 37(1):78–83.  https://doi.org/10.1016/j.jas.2009.09.001 Google Scholar
  82. Iacumin P, Bianucci G, Longinelli A (1992) Oxygen and carbon isotopic composition of fish otoliths. Mar Biol 113(4):537–542.  https://doi.org/10.1007/BF00349696 Google Scholar
  83. Jones TL, Kennett DJ, Kennett JP, Codding BF (2008) Seasonal stability in Late Holocene shellfish harvesting on the central California coast. J Archaeol Sci 35(8):2286–2294.  https://doi.org/10.1016/j.jas.2008.03.002 Google Scholar
  84. Julião RP, Pereira da Silva C, Loução J, Tenedório JA, Lôbo MS, Roxo MJ, Soares N, Salvador R (1998) Atlas de Lisboa e Vale do Tejo. Universidade Nova de Lisboa, LisboaGoogle Scholar
  85. Kalish JM (1991) 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar Ecol Prog Ser 75:191–203.  https://doi.org/10.3354/meps075191 Google Scholar
  86. Kennett DJ, Voorhies B (1996) Oxygen isotopic analysis of archaeological shells to detect seasonal use of wetlands on the southern Pacific coast of Mexico. J Archaeol Sci 23(5):689–704.  https://doi.org/10.1006/jasc.1996.0065 Google Scholar
  87. van der Knaap WO, van Leeuwen JFN (1997) Late Glacial and early Holocene vegetation succession, altitudinal vegetation zonation, and climatic change in the Serra da Estrela, Portugal. Review of Palaeobotany and Palynology 97(3-4):239–285.  https://doi.org/10.1016/S0034-6667(97)00008-0 Google Scholar
  88. Lentacker A (1986a) Preliminary results of the fauna of Cabço de Amoreira and Cabeço de Arruda (Muge, Portugal). Trab Antropol e Etnol 26:9–26Google Scholar
  89. Lentacker A (1994) Fish remains from Portugal: preliminary analysis of the Mesolithic shell-midden sites of Cabeço da Amoreira and Cabeço da Arruda. Ann du Musée R l’Afrique Cent Sci Zool 274:263–271Google Scholar
  90. Mannino MA, Spiro BF, Thomas KD (2003) Sampling shells for seasonality: oxygen isotope analysis on shell carbonates of the inter-tidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. J Archaeol Sci 30(6):667–679.  https://doi.org/10.1016/S0305-4403(02)00238-8 Google Scholar
  91. Mannino MA, Thomas KD, Leng MJ, Piperno M, Tusa S, Tagliacozzo A (2007) Marine resources in the Mesolithic and Neolithic at the Grotta Dell’Uzzo (Sicily): evidence from isotope analyses of marine shells*. Archaeometry 49(1):117–133.  https://doi.org/10.1111/j.1475-4754.2007.00291.x Google Scholar
  92. Marreiros J, Gibaja J, Paixão E, Pereira T, Cascalheira J, Bicho N (2015) New evidences for human settlement organization from the Mesolithic site of Cabeço da Amoreira (Muge): preliminary lithic use-wear analysis. In: Bicho N, Detry C, Cunha E, Price DT (eds) Proceedings of the Muge 150th anniversary of the discovery of the Mesolithic Shellmiddens. Cambridge Scholars Publishing, Cambridge, pp 133–144Google Scholar
  93. Marreiros J, Jesus L, Cascalheira J, Pereira T, Gibaja J, Bicho N (n.d.) “Shell we move?” New technological approach to Mesolithic settlement patterns at Muge (Portuguese Estremadura). In: The Eighth International Conference on the Mesolithic in Europe Santander from 13th to 17th September 2010. Cantabrian International Institute for Prehistoric Research, SantanderGoogle Scholar
  94. Martins J, Carvalho A, Soares A (2008) A calibração das datas de radiocarbono dos esqueletos humanos de Muge. Promontoria 6:73–94Google Scholar
  95. McDermott F, Mattey D, Hawkesworth C (2001) Centennial-scale Holocene climate variability revealed by a high-resolution speleothem delta 18O record from SW Ireland. Science 294(80):1328–1331.  https://doi.org/10.1126/science.1063678 Google Scholar
  96. McKechnie I, Lepofsky D, Moss ML, Butler VL, Orchard TJ, Coupland G, Foster F, Caldwell M, Lertzman K (2014) Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. PNAS 111(9):E807–E816.  https://doi.org/10.1073/pnas.1316072111 Google Scholar
  97. McKechnie I, Moss ML (2016) Meta-analysis in zooarchaeology expands perspectives on Indigenous fisheries of the Northwest Coast of North America. J Archaeol Sci Rep 8:470–485Google Scholar
  98. McManus JF, Oppo DO, Cullen JL (1999) A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 293(80):971–975Google Scholar
  99. Meiklejohn C, Roksandic M, Jackes M, Lubell D (2009) Radiocarbon dating of Mesolithic human remains in Portugal. Mesolithic Miscellany 20(1):4–16Google Scholar
  100. van der Merwe NJ, Williamson RF, Pfeiffer S, Thomas SC, Allegretto KO (2003) The Moatfield ossuary: isotopic dietary analysis of an Iroquoian community, using dental tissue. J Anthropol Archaeol 22(3):245–261.  https://doi.org/10.1016/S0278-4165(03)00038-2 Google Scholar
  101. Monge Soares AM (2005) Variabilidade do “upwelling” costeiro durante o holocénico nas margens atlânticas ocidental e meridional da Península Ibérica. PhD thesis. Universidade do AlgarveGoogle Scholar
  102. Monge Soares AM (2006) Coastal upwelling and radiocarbon—evidence for temporal fluctuations in ocean reservoir effect off Portugal during the Holocene. Radiocarbon 48(01):45–60.  https://doi.org/10.1017/S0033822200035384 Google Scholar
  103. Monks GG (1981) Seasonality studies. Adv Archaeol method theory 4:177–240Google Scholar
  104. Monteiro P (2011) Woodland exploitation during the Mesolithic: anthracological study of new samples from Cabeço da Amoreira (Muge, Portugal). North. Universidad del País VascoGoogle Scholar
  105. Monteiro P (2012) Woodland exploitation during the Mesolithic: anthracological study of new samples from Cabeço da Amoreira (Muge, Portugal). Leioa 2:38–47Google Scholar
  106. Monteiro P, Zapata L, Bicho N (2015) The Midden is on fire! Charcoal analysis from Cabeço da Amoreira (Muge Shellmiddens). In: Bicho N, Detry C, Price DT, Cunha E (Eds) Muge 150th. 150th Anniversary of the Discovery of the Mesolithic Shellmiddens. Cambridge Scholars Publishing, pp 161–176Google Scholar
  107. Moreno-García M (2011) Exploração dos recursos faunísticos de origem terrestre. In: Araújo AC (ed) O Concheiro de Toledo No Contexto Do Mesolítico Do Litoral Da Estremadura, Trabalhos de Arqueologia, vol 53. Ministério da Cultura. IGESPAR, Lisboa, pp 99–126Google Scholar
  108. Neeley MP, Clark GA (1990) Measuring social complexity in the European Mesolithic. In: Vermeersch PM, Van Peer P (eds) Contributions to the Mesolithic in Europe. Leuven University Press, Leuven, pp 127–137Google Scholar
  109. Park M-H (1998) Abrupt climatic changes induced by ice-rafting events in the eastern North Atlantic during the late Quaternary: stable isotope and X-ray mineralogical analyses. Geosci J 2(2):59–67.  https://doi.org/10.1007/BF02910484 Google Scholar
  110. Penaud A, Eynaud F, Turon JL, Blamart D, Rossignol L, Marret F, Lopez-Martinez C, Grimalt JO, Malaizé B, Charlier K (2010) Contrasting paleoceanographic conditions off Morocco during Heinrich events (1 and 2) and the Last Glacial Maximum. Quat Sci Rev 29(15-16):1923–1939.  https://doi.org/10.1016/j.quascirev.2010.04.011 Google Scholar
  111. Peyroteo Stjerna R (2016) On death in the mesolithic: Or the mortuary practices of the last hunter-gatherers of the South-Western Iberian Peninsula, 7th–6th Millennium BCE. PhD thesis, Uppsala UniversityGoogle Scholar
  112. Pollard DA, Yokes B, Kara M, Bizsel K, Quignard JP (2015) Argyrosomus regius [WWW document]. IUCN Red List Threat. Species 2015. URL doi:  https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T198706A49227019.en (accessed 4.14.16)
  113. Póvoas L (2001) Contribuição do estudo das associações de roedores para o conhecimento de variações climáticas durante o Quaternário em Portugal, in: Actas Da V Reunião Do Quaternário Ibérico/ I Congresso Do Quaternário de Países de Línguas IbéricasGoogle Scholar
  114. Prista NMGG (2013) Argyrosomus regius (Asso, 1801) fishery and ecology in Portuguese waters, with reference to its relationships to other European and African populations. PhD thesis. Universidade de Lisboa.Google Scholar
  115. Prista N, Costa JL, Costa MJ, Jones C (2009) Age determination in meagre Argyrosomus regius. Relat Cient Téc Inst Invest Pescas Mar 49, p 54Google Scholar
  116. Quitmyer IR, Jones DS, Arnold WS (1997) The sclerochronology of hard clams, Mercenaria spp., from the South-Eastern U.S.A.: a method of elucidating the zooarchaeological records of seasonal resource procurement and seasonality in prehistoric shell middens. J Archaeol Sci 24(9):825–840.  https://doi.org/10.1006/jasc.1996.0163 Google Scholar
  117. Radtke RL, Lenz P, Showers W, Moksness E (1996) Environmental information stored in otoliths: insights from stable isotopes. Mar Biol 127(1):161–170.  https://doi.org/10.1007/BF00993656 Google Scholar
  118. Ramos C, Reis E (2001) As cheias no Sul de Portugal em diferentes tipos de bacias hidrográficas. Finisterra 71:61–82Google Scholar
  119. Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen M-L, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson ME, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111(D6):D06102.  https://doi.org/10.1029/2005JD006079 Google Scholar
  120. Reimer P, Baillie M, Bard E, Bayliss A, Beck J, Blackwell P, Bronk Ramsey C, Buck C, Burr G, Edwards R, Friedrich M, Grootes P, Guilderson T, Hajdas I, Heaton T, Hogg A, Hughen K, Kaiser K, Kromer B, McCormac F, Manning S, Reimer R, Richards D, Southon J, Talamo S, Turney C, van der Plicht J, Weyhenmeyer C (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0e50,000 years cal BP. Radiocarbon 51(4):1111–11150Google Scholar
  121. Richards MP, Hedges REM (1999) Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic Coast of Europe. J Archaeol Sci 26(6):717–722.  https://doi.org/10.1006/jasc.1998.0387 Google Scholar
  122. Robson H, Andersen S, Craig O, Fischer A, Glykou A, Hartz S, Lübke H, Schmölcke U, Heron C (2012) Carbon and nitrogen isotope signals in eel bone collagen from Mesolithic and Neolithic sites in northern Europe. J Archaeol Sci 39(7):2003–2011.  https://doi.org/10.1016/j.jas.2012.01.033 Google Scholar
  123. Robson HK, Andersen SH, Clarke L, Craig OE, Kurt J, Jones AKG, Karsten P, Milner N, Price TD, Ritchie K, Heron C, Gron KJ, Jones GAK, Karsten P, Milner N, Douglas Price T, Ritchie K, Zabilska-Kunek M, Heron C (2015) Carbon and nitrogen stable isotope values in freshwater, brackish and marine fish bone collagen from Mesolithic and Neolithic sites in central and northern Europe. Environ Archaeol 21(2):105–118  https://doi.org/10.1179/1749631415Y.0000000014
  124. Robson HK, Andersen SH, Clarke L, Craig OE, Gron KJ, Jones AKG, Karsten P, Milner N, Price TD, Ritchie K, Zabilska-Kunek M, Heron C (2016) Carbon and nitrogen stable isotope values in freshwater, brackish and marine fish bone collagen from Mesolithic and Neolithic sites in central and northern Europe. Environ Archaeol 21(2):105–118.  https://doi.org/10.1179/1749631415Y.0000000014 Google Scholar
  125. Rocksandic M (2006) Analysis of burials from the new excavations of the sites Cabeço da Amoreira and Cabeço da Arruda (Muge, Portugal). In: Bicho N, Veríssimo H (eds) Do Epipaleolítico ao Calcolítico na Península Ibérica, Actas do IV Congresso de Arqueologia Peninsular. Universidade do Algarve, Faro, pp 43–54Google Scholar
  126. Rodrigues T, Grimalt JO, Abrantes FG, Flores JA, Lebreiro SM (2009) Holocene interdependences of changes in sea surface temperature, productivity, and fluvial inputs in the Iberian continental shelf (Tagus mud patch). Geochemistry, Geophys. Geosystems 10, n/a-n/a. doi: https://doi.org/10.1029/2008GC002367
  127. Rolão J (1999) Del Würm Final al Holocénico en el Bajo Valle del Tajo. Complejo arqueológico mesolítico de Muge. PhD thesis. Universidade de SalamancaGoogle Scholar
  128. Roucoux KH, Shackleton NJ, de Abreu L, Schönfeld J, Tzedakis PC (2001) Combined marine proxy and pollen analyses reveal rapid Iberian vegetation response to North Atlantic millennial-scale climate oscillations. Quat Res 56(01):128–132.  https://doi.org/10.1006/qres.2001.2218 Google Scholar
  129. Salgueiro E, Voelker AHL, de Abreu L, Abrantes F, Meggers H, Wefer G (2010) Temperature and productivity changes off the western Iberian margin during the last 150 ky. Quat Sci Rev 29(5-6):680–695.  https://doi.org/10.1016/j.quascirev.2009.11.013 Google Scholar
  130. dos Santos CTN (2010) Reconstrução das condições paleoambientais e paleoclimáticas no estuário do Tejo durante o Holocénico (~12000 anos). PhD thesis. Universidade do PortoGoogle Scholar
  131. Santos L, Fernanda Sánchez Goñi M (2003) Late glacial and Holocene environmental changes in Portuguese coastal lagoons 3: vegetation history of the Santo Andre´ coastal area. The Holocene 13(3):459–464.  https://doi.org/10.1191/0959683603hl638rp Google Scholar
  132. Schönfeld J, Zahn R (2000) Late glacial to Holocene history of the Mediterranean outflow. Evidence from benthic foraminiferal assemblages and stable isotopes at the Portuguese margin. Palaeogeogr Palaeoclimatol Palaeoecol 159(1-2):85–111.  https://doi.org/10.1016/S0031-0182(00)00035-3 Google Scholar
  133. van der Schriek T (2004) Holocene envrionmental change and the alluvial geoarchaeology of Mesolithic settlement-subsistence in the Muge and Magos Valleys, lower Tagus basin, Portugal. PhD thesis. University of Newcastle upon Tyne.Google Scholar
  134. van der Schriek T, Passmore DG, Franco Mugica F, Stevenson AC, Boomer I, Rolão J (2008) Holocene palaeoecology and floodplain evolution of the Muge tributary, Lower Tagus Basin. Portugal Quat Int 189(1):135–151.  https://doi.org/10.1016/j.quaint.2007.09.007 Google Scholar
  135. Scourse J, Richardson C, Forsythe G, Harris I, Heinemeier J, Fraser N, Briffa K, Jones P (2006) First cross-matched floating chronology from the marine fossil record: data from growth lines of the long-lived bivalve mollusc Arctica islandica. The Holocene 16(7):967–974.  https://doi.org/10.1177/0959683606hl987rp Google Scholar
  136. Shackleton NJ (1973) Oxygen isotope analysis as a means of determining season of occupation of prehistoric midden sites. Archaeometry 15(1):133–141.  https://doi.org/10.1111/j.1475-4754.1973.tb00082.x Google Scholar
  137. Spikins P (2009) Mesolithic Europe: glimpses of another world. In: Spikins P (ed) Bailey, G. Cambridge University Press, Mesolithic Europe, pp 1–17Google Scholar
  138. Surge D, Walker KJ (2005) Oxygen isotope composition of modern and archaeological otoliths from the estuarine hardhead catfish (Ariopsis felis) and their potential to record low-latitude climate change. Palaeogeogr Palaeoclimatol Palaeoecol 228(1-2):179–191.  https://doi.org/10.1016/j.palaeo.2005.03.051 Google Scholar
  139. Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 61(14):2909–2919.  https://doi.org/10.1016/S0016-7037(97)00141-5 Google Scholar
  140. Turon J (2003) Land–sea correlations for the last glaciation inferred from a pollen and dinocyst record from the Portuguese margin. Quat Res 59(01):88–96.  https://doi.org/10.1016/S0033-5894(02)00018-2 Google Scholar
  141. Umbelino C (2006) Outros Sabores do Passado. As análises de oligoelementos e de isótopos estáveis na reconstituição da dieta das comunidades humanas do Mesolítico Final e do Neolítico Final / Calcolítico do território português. Universidade de CoimbraGoogle Scholar
  142. Van Der Schriek T, Passmore DG, Anthony C, Rolão J (2007) The palaeogeography of Mesolithic settlement-subsistence and shell midden formation in the Muge valley, Lower Tagus Basin, Portugal. The Holocene 17:369–385Google Scholar
  143. Trueman CN, Chung M-T, Shores D (2016) Ecogeochemistry potential in deep time biodiversity illustrated using a modern deep-water case study. Philos Trans R Soc B Biol Sci 371:20150223.  https://doi.org/10.1098/rstb.2015.0223 Google Scholar
  144. Van Leeuwaarden W, Queiróz PF (2003) Estudos de Arqueobotânica no sítio da Ponta da Vigia. Rev Port Arqueol 6:79–81Google Scholar
  145. Van Neer W, Augustynen S, Linkowski T (1993) Daily growth increments on fish otoliths as seasonality indicators on archaeological sites: the Tilapia from late Palaeolithic Makhadma in Egypt. Int J Osteoarchaeol 3(4):241–248.  https://doi.org/10.1002/oa.1390030403 Google Scholar
  146. Vis G-J, Bohncke SJP, Schneider H, Kasse C, Coenraads-Nederveen S, Zuurbier K, Rozema J (2010) Holocene flooding history of the Lower Tagus Valley (Portugal). J Quat Sci 25(8):1222–1238.  https://doi.org/10.1002/jqs.1401 Google Scholar
  147. Voelker A, Lebreiro S, Schonfeld J, Cacho I, Erlenkeuser H, Abrantes F (2006) Mediterranean outflow strengthening during northern hemisphere coolings: a salt source for the glacial Atlantic? Earth planet Sci Lett 245(1-2):39–55.  https://doi.org/10.1016/j.epsl.2006.03.014 Google Scholar
  148. Wang T, Surge D, Walker KJ (2011) Isotopic evidence for climate change during the Vandal Minimum from Ariopsis felis otoliths and Mercenaria campechiensis shells, southwest Florida, USA. The Holocene 21(7):1081–1091.  https://doi.org/10.1177/0959683611400458 Google Scholar
  149. Wang T, Surge D, Walker KJ (2013) Seasonal climate change across the Roman warm period/vandal minimum transition using isotope sclerochronology in archaeological shells and otoliths, southwest Florida. USA Quat Int 308–309:230–241.  https://doi.org/10.1016/j.quaint.2012.11.013 Google Scholar
  150. Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100(1-4):207–248.  https://doi.org/10.1016/0025-3227(91)90234-U Google Scholar
  151. Wheeler A, Jones AKG (2009) Fishes. Cambridge University Press, CambridgeGoogle Scholar
  152. White SN (2009) Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chem Geol 259:240–252.  https://doi.org/10.1016/j.chemgeo.2008.11.008 Google Scholar
  153. Wurster CM, Patterson WP (2001) Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otoliths. Palaeogeogr Palaeoclimatol Palaeoecol 170(1-2):81–100.  https://doi.org/10.1016/S0031-0182(01)00229-2 Google Scholar
  154. Wurster CM, Patterson WP (2003) Metabolic rate of late Holocene freshwater fish: evidence from δ 13 C values of otoliths. Paleobiology 29(4):492–505.  https://doi.org/10.1666/0094-8373(2003)029<0492:MROLHF>2.0.CO;2 Google Scholar
  155. Zahn R, Schönfeld J, Kudrass H-R, Park M-H, Erlenkeuser H, Grootes P (1997) Thermohaline instability in the North Atlantic during meltwater events: stable isotope and ice-rafted detritus records from Core SO75-26KL, Portuguese Margin. Paleoceanography 12(5):696–710.  https://doi.org/10.1029/97PA00581 Google Scholar
  156. Zambujo G, Lourenço S (2002) Duas novas datações absolutas para a Ponta da Vigia. Rev Port Arqueol 6:69–78Google Scholar
  157. Zilhão J, Marks A, Ferring R, AI E (1996) The Upper Paleolithic of the Rio Maior basin (Portugal). Preliminary results of a 1987–1993 Portuguese-American research project. Trab Antropol e Etnol 36:69–82Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rita Dias
    • 1
    Email author
  • Juan Estrella-Martínez
    • 2
  • Paul Butler
    • 2
  • Alexandra Nederbragt
    • 3
  • Ian R. Hall
    • 3
  • Pedro Barrulas
    • 4
  • Anne France Maurer
    • 4
  • Ana Mafalda Cardeira
    • 4
    • 5
  • José Mirão
    • 4
  • Cleia Detry
    • 6
  • Nuno Bicho
    • 1
  1. 1.Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB)Universidade do AlgarveFaroPortugal
  2. 2.School of Ocean SciencesBangor UniversityBangorUK
  3. 3.School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  4. 4.Hercules LaboratoryUniversidade de ÉvoraÉvoraPortugal
  5. 5.Artistic Studies Research Center (CIEBA/FBAUL)Largo da Academia Nacional de Belas-ArtesLisbonPortugal
  6. 6.Faculdade de Letras da Universidade de LisboaCentro de Arqueologia da Universidade de Lisboa (UNIARQ)LisbonPortugal

Personalised recommendations