Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 2, pp 713–726 | Cite as

How reliable is the visual identification of heat treatment on silcrete? A quantitative verification with a new method

  • Patrick SchmidtEmail author
Original Paper

Abstract

Heat treatment of silcrete was a major innovation in the southern African Middle Stone Age (MSA). It allowed for the first time to improve materials for tool knapping, and it may have represented an important step in the perception of natural resources as modifiable objects. Recognising heat treatment in silcrete assemblages is therefore a crucial step for archaeologists working on the MSA. Two different methods, gloss analysis and visual estimation of surface roughness, have so far been used to identify heat treatment. Although both methods have advantages in specific situations, only visual heating proxy classifications allow to count heated vs. not-heated artefacts in assemblages. However, no objective independent data on the reliability and reproducibility of visual classifications are available today. This paper presents a new and promising non-destructive way to measure surface roughness and to verify the reliability of visual classifications: the replica tape method. The results show a rather good reliability of visual classifications: only few pieces are misclassified (n = 3), and the results of both replica tape measurements and visual classification agree within a 3% error range. These results also lay out the foundations for future developments of replica tape measurements to make it a stand-alone method for identifying heat treatment within silcrete assemblages.

Keywords

Surface roughness Fracture surface analysis Archaeometric technique to identify heat treatment Early-transformative techniques Middle Stone Age archaeology 

Notes

Acknowledgements

I am thankful to John Parkington for providing access to the Diepkloof collections at the University of Cape Town, to Guillaume Porraz for his assistance with pre-selecting and analysing the SU Kerry artefacts and to Pierre-Jean Texier who excavated SU Kerry at Diepkloof. Nóra Sándor helped to elaborate the mathematical pathway for orthogonal projection.

Funding information

Financial support for this study was provided by the Deutsche Forschungsgemeinschaft (DFG) (grant number SCHM 3275/2-1).

References

  1. Bass M (2009) Handbook of optics. Volume 1, Geometrical and physical optics, polarized light, components and instruments, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  2. Beamish D (2014) Replica tape—a source of new surface profile information. DeFelsko Corporation. http://www.defelsko.com/technotes/profile/replica-tape.htm. Accessed 05 Aug 2017
  3. Beamish D (2015) Replica tape: unlocking hidden information. J Prot Coat Linings 2015:1–6Google Scholar
  4. Binder D (1984) Systèmes de débitage laminaire par pression : exemples chasséens provençaux. In: Tixier J, Inizan ML, Roche H (eds) Préhistoire de la pierre taillée, 2 : économie du débitage laminaire : technologie et expérimentation : IIIe table ronde de technologie lithique. Meudin-Bellevue, octobre 1982. Cercle de Recherches et d'Etudes Préhistoriques, Paris, pp 71–84Google Scholar
  5. Binder D, Gassin B (1988) Le débitage laminaire chasséen après chauffe : technologie et traces d’utilisation. In: Beyries S (ed) Industries lithiques, tracéologie et technologie, vol International Series, vol 411. British Archaeological Reports, Oxford, pp 93–125Google Scholar
  6. Bordes F (1969) Traitement thermique du silex au Solutréen Bulletin de la Société préhistorique française 66:197, 7.  https://doi.org/10.3406/bspf.1969.10404
  7. Brown K, Marean C (2010) Wood fuel availability for heat treatment drives the rise and fall of silcrete as a raw material in the Middle Stone Age of South Africa, “Abstracts of the PaleoAnthropology Society 2010 Meetings.” PaleoAnthropology 2010:A0001-A0040Google Scholar
  8. Brown KS, Marean CW, Herries AIR, Jacobs Z, Tribolo C, Braun D, Roberts DL, Meyer MC, Bernatchez J (2009) Fire as an engineering tool of early modern humans. Science 325(5942):859–862.  https://doi.org/10.1126/science.1175028 CrossRefGoogle Scholar
  9. Cochrane GWG, Habgood PJ, Doelman T, Herries AIR, Webb JA (2012) A progress report on research into stone artefacts of the southern Arcadia Valley, central Queensland. Aust Archaeol 75(1):104–109.  https://doi.org/10.1080/03122417.2012.11681953 CrossRefGoogle Scholar
  10. Delagnes A, Schmidt P, Douze K, Wurz S, Bellot-Gurlet L, Conard NJ, Nickel KG, van Niekerk KL, Henshilwood CS (2016) Early evidence for the extensive heat treatment of silcrete in the Howiesons Poort at Klipdrift Shelter (layer PBD, 65 ka), South Africa. PLoS One 11(10):e0163874.  https://doi.org/10.1371/journal.pone.0163874 CrossRefGoogle Scholar
  11. Domanski M, Webb JA, Boland J (1994) Mechanical properties of stone artefact materials and the effect of heat treatment. Archaeometry 36(2):177–208.  https://doi.org/10.1111/j.1475-4754.1994.tb00963.x CrossRefGoogle Scholar
  12. Inizan ML, Tixier J (2001) L'émergence des arts du feu : le traitement thermique des roches siliceuses. Paléorient 26:23–36CrossRefGoogle Scholar
  13. Inizan ML, Roche H, Tixier J (1976) Avantages d’un traitement thermique pour la taille des roches siliceuses. Quaternaria Roma 19:1–18Google Scholar
  14. Léa V (2004) Centres de production et diffusion des silex bédouliens au Chasséen Gallia préhistoire 46:231–250, 1, DOI:  https://doi.org/10.3406/galip.2004.2044
  15. Léa V (2005) Raw, pre-heated or ready to use: discovering specialist supply systems for flint industries in mid-Neolithic (Chassey culture) communities in southern France. Antiquity 79:1–15CrossRefGoogle Scholar
  16. Mandeville MD (1973) A consideration of the thermal pretreatment of chert. Plains Anthropol 18:177–202CrossRefGoogle Scholar
  17. Marchand G (2001) Les traditions techniques du Mésolithique final dans le sud du Portugal: les industries lithiques des amas coquilliers de Várzea da Mó et de Cabeço do Rebolador (fouilles M. Heleno). Revista Portuguesa de Arqueologia 4:47–110Google Scholar
  18. Mourre V, Villa P, Henshilwood CS (2010) Early use of pressure flaking on lithic artifacts at Blombos Cave, South Africa. Science 330(6004):659–662.  https://doi.org/10.1126/science.1195550 CrossRefGoogle Scholar
  19. Porraz G, Texier P-J, Archer W, Piboule M, Rigaud J-P, Tribolo C (2013) Technological successions in the Middle Stone Age sequence of Diepkloof Rock Shelter, Western Cape, South Africa. J Archaeol Sci 40(9):3376–3400.  https://doi.org/10.1016/j.jas.2013.02.012 CrossRefGoogle Scholar
  20. Porraz G, Igreja M, Schmidt P, Parkington JE (2016) A shape to the microlithic Robberg from Elands Bay Cave (South Africa). South Afr Humanit 29:203–247Google Scholar
  21. Roberts DL (2003) Age, genesis and significance of South African coastal belt silcretes, Memoir. Council for Geoscience, Pretoria, p 95Google Scholar
  22. Rowney M, White JP (1997) Detecting heat treatment on silcrete: experiments with methods. J Archaeol Sci 24(7):649–657.  https://doi.org/10.1006/jasc.1996.0147 CrossRefGoogle Scholar
  23. Schmidt P (2014) What causes failure (overheating) during lithic heat treatment? Archaeol Anthropol Sci 6(2):107–112.  https://doi.org/10.1007/s12520-013-0162-3 CrossRefGoogle Scholar
  24. Schmidt P, Mackay A (2016) Why was silcrete heat-treated in the Middle Stone Age? An early transformative technology in the context of raw material use at Mertenhof Rock Shelter, South Africa. PLoS ONE 11(2):e0149243.  https://doi.org/10.1371/journal.pone.0149243 CrossRefGoogle Scholar
  25. Schmidt P, Masse S, Laurent G, Slodczyk A, le Bourhis E, Perrenoud C, Livage J, Fröhlich F (2012) Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. J Archaeol Sci 39(1):135–144.  https://doi.org/10.1016/j.jas.2011.09.012 CrossRefGoogle Scholar
  26. Schmidt P, Porraz G, Slodczyk A, Bellot-Gurlet L, Archer W, Miller CE (2013) Heat treatment in the South African Middle Stone Age: temperature induced transformations of silcrete and their technological implications. J Archaeol Sci 40(9):3519–3531.  https://doi.org/10.1016/j.jas.2012.10.016 CrossRefGoogle Scholar
  27. Schmidt P, Porraz G, Bellot-Gurlet L, February E, Ligouis B, Paris C, Texier PJ, Parkington JE, Miller CE, Nickel KG, Conard NJ (2015) A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age. J Hum Evol 85:22–34.  https://doi.org/10.1016/j.jhevol.2015.05.001 CrossRefGoogle Scholar
  28. Schmidt P, February E, Bretzke K, Bellot-Gurlet L (2016a) Tempering-residue on heat-treated silcrete: an experimental perspective and a potential analytical protocol. J Archaeol Sci Reports, 15:611–19Google Scholar
  29. Schmidt P, Paris C, Bellot-Gurlet L (2016b) The investment in time needed for heat treatment of flint and chert. Archaeol Anthropol Sci 8(4):839–848.  https://doi.org/10.1007/s12520-015-0259-y CrossRefGoogle Scholar
  30. Schmidt P, Lauer C, Buck G, Miller CE, Nickel KG (2017) Detailed near-infrared study of the ‘water’-related transformations in silcrete upon heat treatment. Phys Chem Miner 44(1):21–31.  https://doi.org/10.1007/s00269-016-0833-6 CrossRefGoogle Scholar
  31. Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27(4):623–656.  https://doi.org/10.1002/j.1538-7305.1948.tb00917.x CrossRefGoogle Scholar
  32. Summerfield MA (1983a) Geochemistry of weathering profile silcretes, southern Cape Province, South Africa. In: Wilson RCL (ed) Residual deposits: surface related weathering processes and materials, Special Publication, vol 11. Geological Society of London, London, pp 167–178Google Scholar
  33. Summerfield MA (1983b) Petrography and diagenesis of silcrete from the Kalahari Basin and Cape coastal zone, Southern Africa. J Sediment Res 53:895–909Google Scholar
  34. Terradas X, Gibaja JF (2001) El tratamiento termico en la produccion litica: el ejemplo del Neoltico Medio Catalan Cypsela 13:31–58Google Scholar
  35. Tiffagom M (1998) Témoignages d’un traitement thermique des feuilles de laurier dans le Solutréen supérieur de la grotte du Parpalló (Gandia, Espagne). Paléo 10(1):147–161.  https://doi.org/10.3406/pal.1998.1134 CrossRefGoogle Scholar
  36. Tribolo C, Mercier N, Douville E, Joron JL, Reyss JL, Rufer D, Cantin N, Lefrais Y, Miller CE, Porraz G, Parkington J, Rigaud JP, Texier PJ (2013) OSL and TL dating of the Middle Stone Age sequence at Diepkloof Rock Shelter (South Africa): a clarification. J Archaeol Sci 40(9):3401–3411.  https://doi.org/10.1016/j.jas.2012.12.001 CrossRefGoogle Scholar
  37. Wadley L (2013) Recognizing complex cognition through innovative technology in Stone Age and Palaeolithic Sites. Camb Archaeol J 23(02):163–183.  https://doi.org/10.1017/S0959774313000309 CrossRefGoogle Scholar
  38. Wilke PJ, Flenniken J, Ozbun TL (1991) Clovis technology at the Anzick Site, Montana. J Calif Gt Basin Anthropol 13:242–272Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Early Prehistory and Quaternary EcologyEberhard Karls University of TübingenTübingenGermany
  2. 2.Department of Geosciences, Applied MineralogyEberhard Karls University of TübingenTübingenGermany

Personalised recommendations